A Class of Fourth-Order Symmetrical Kirchhoff Type Systems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- .
- (M0)
- The continuous functions and are increasing and fulfilling that for any .and satisfying the following two conditions:
- (F0)
- There exist with and
- (F)
- for all and .for all and .is function such that is measurable in for all and is continuously differentiable in for example are the partial derivatives of G which satisfy the following condition.
- (G0)
3. Main Results and Proofs
- (1)
- for all
- (2)
- There exist and such that
- (3)
- (i)
- Φ is bounded on any bounded subset and sequentially weakly lower semicontinuous;
- (ii)
- is strictly monotone and continuous;
- (iii)
- is a homeomorphism.
4. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winslow, W.M. Induced Fibration of Suspensions. J. Appl. Phys. 1949, 20, 1137–1140. [Google Scholar] [CrossRef]
- Acerbi, E.; Mingione, G. Gradient estimate for the p(x)-Laplacian system. J. Reine Angew. Math. 2005, 584, 117–148. [Google Scholar] [CrossRef]
- Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1386–1406. [Google Scholar] [CrossRef] [Green Version]
- Boureanu, M.-M.; Matei, A.; Sofonea, M. Nonlinear problems with p(.)-growth conditions and applications to antiplane contact models. Adv. Nonl. Stud. 2014, 14, 295–313. [Google Scholar] [CrossRef]
- Zhikov, V.-V. Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 1987, 29, 33–66. [Google Scholar] [CrossRef]
- Fragnelli, G. Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 2010, 367, 204–228. [Google Scholar] [CrossRef]
- Bocea, M.; Mihăilescu, M. Γ-convergence of power-law functionals with variable exponents. Nonlinear Anal. 2010, 73, 110–121. [Google Scholar] [CrossRef]
- Bocea, M.; Mihăilescu, M.; Popovici, C. On the asymptotic behavior of variable exponent power-law functionals and applications. Ricerche Mater. 2010, 59, 207–238. [Google Scholar] [CrossRef]
- Bocea, M.; Mihăilescu, M.; Perez-Llanos, M.; Rossi, J.-D. Models for growth of heterogeneous sandpiles via Mosco convergence. Asympt. Anal. 2012, 78, 11–36. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Chung, N.T. Multiple Solutions for a Non-cooperative Elliptic System of Kirchhoff Type Involving p-Biharmonic Operator and Critical Growth. Acta Appl. Math. 2020, 165, 1–17. [Google Scholar] [CrossRef]
- Heidari, S.; Razani, A. Infinitely many solutions for ((p(x), q(x))-Laplacian-like systems. Commun. Korean Math. Soc. 2021, 36, 51–62. [Google Scholar]
- Nabab, D.; Vélin, J. On a nonlinear elliptic system involving the (p(x), q(x))-Laplacian operator with gradient dependence. Complex Var. Elliptic Equ. 2022, 67, 1554–1578. [Google Scholar] [CrossRef]
- Choudhuri, D.; Zuo, J. Critical Kirchhoff p(.) & q(.)-fractional variable-order systems with variable exponent growth. Anal. Math. Phys. 2022, 12, 1–29. [Google Scholar]
- Cruz-Uribe, D.-V.; Fiorenza, A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis; Birkhauser/Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Rădulescu, V.D.; Repovš, D.D. Partial Diferential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; Chapman and Hall/CRC: Hoboken, NJ, USA, 2015. [Google Scholar]
- Diening, L.; Harjuletho, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponent; Lect. Notes Math.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Avci, M.; Cekic, B.; Mashiyev, R.A. Existence and multiplicity of the solutions of the p(x)-Kirchoff type equation via genus theory. Math. Methods Appl. Sci. 2011, 34, 1751–1759. [Google Scholar] [CrossRef]
- Dai, G.; Li, X. On Nonlocal Elliptic Systems of p(x)-Kirchhoff-Type under Neumann Boundary Condition. J. Math. Res. Appl. 2013, 33, 443–450. [Google Scholar]
- Dănet, C.-P. Two maximum principles for a nonlinear fourth order equation from thin plate theory. Electron. Qual. Theory Diff. Equ. 2014, 31, 1–9. [Google Scholar] [CrossRef]
- Ferrero, A.; Warnault, G. On solutions of second and fourth order elliptic equations with power-type nonlinearities. Nonlinear Anal. 2009, 70, 2889–2902. [Google Scholar] [CrossRef]
- Myers, T.G. Thin films with high surface tension. SIAM Rev. 1998, 40, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Cammaroto, F.; Vilasi, L. Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator. Nonlinear Anal. 2011, 74, 1841–1852. [Google Scholar] [CrossRef]
- Cheng, B.; Wu, X.; Liu, J. Multiplicity of nontrivial solutions for Kirchhoff type problems. Bound. Value Probl. 2010, 2010, 268946. [Google Scholar] [CrossRef] [Green Version]
- Liu, D. On a p-Kirchhoff equation via fountain theorem and dual fountain theorem. Nonlinear Anal 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Ma, T.F. Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 2005, 63, 1967–1977. [Google Scholar] [CrossRef]
- Sun, J.J.; Tang, C.L. Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 2011, 74, 1212–1222. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhao, D. On the spaces Lp(x) (Ω) and Wm,p(x) (Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Milhailescu, M. Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplacian operator. Nonlinear Anal. TMA 2007, 67, 1419–1425. [Google Scholar] [CrossRef]
- Yao, J.H. Solution for Neumann boundary problems involving the p(x)-Laplacian operators. Nonlinear Anal. TMA 2008, 68, 1271–1283. [Google Scholar] [CrossRef]
- Fan, X.L.; Fan, X. A Knobloch-type result for p(x)-Laplacian systems. J. Math. Appl. 2003, 282, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Zang, A.; Fu, Y. Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 2008, 69, 3629–3636. [Google Scholar] [CrossRef]
- Amrouss, A.R.E. Anass ourraoui, Existence of solutions for a boundary problem involving p(x)-biharmonic operator. Bol. Soc. Parana. Mat. 2013, 31, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Ricceri, B. On an elliptic Kirchhoff-type problem depending on two parameters. J. Glob. Optim. 2010, 46, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Amrouss, A.R.E.; Moradi, F.; Moussaoui, M. Existence of solutions for fourth-order PDEs with variable exponents. Electron. J. Differ. Equ. 2009, 153, 1–13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Taarabti, S.; El Allali, Z.; Ben Hadddouch, K.; Zuo, J. A Class of Fourth-Order Symmetrical Kirchhoff Type Systems. Symmetry 2022, 14, 1630. https://doi.org/10.3390/sym14081630
Wu Y, Taarabti S, El Allali Z, Ben Hadddouch K, Zuo J. A Class of Fourth-Order Symmetrical Kirchhoff Type Systems. Symmetry. 2022; 14(8):1630. https://doi.org/10.3390/sym14081630
Chicago/Turabian StyleWu, Yong, Said Taarabti, Zakaria El Allali, Khalil Ben Hadddouch, and Jiabin Zuo. 2022. "A Class of Fourth-Order Symmetrical Kirchhoff Type Systems" Symmetry 14, no. 8: 1630. https://doi.org/10.3390/sym14081630
APA StyleWu, Y., Taarabti, S., El Allali, Z., Ben Hadddouch, K., & Zuo, J. (2022). A Class of Fourth-Order Symmetrical Kirchhoff Type Systems. Symmetry, 14(8), 1630. https://doi.org/10.3390/sym14081630