Classification of Lorentzian Lie Groups Based on Codazzi Tensors Associated with Yano Connections
Abstract
:1. Introduction
2. Basic Notions
3. Codazzi Tensors Associated with Yano Connections on Lorentzian Lie Groups
3.1. Codazzi Tensor Associated with Yano Connection of
3.2. Codazzi Tensor Associated with Yano Connection of
3.3. Codazzi Tensor Associated with Yano Connection of
3.4. Codazzi Tensor Associated with Yano Connection of
3.5. Codazzi Tensor Associated with Yano Connection of
3.6. Codazzi Tensor Associated with Yano Connection of
3.7. Codazzi Tensor Associated with the Yano Connection of
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrzej, D.; Shen, C. Codazzi tensor fields, Curvature and Pontryagin forms. Proc. Lond. Math. Soc. 1983, 47, 15–26. [Google Scholar]
- Gebarowski, A. The structure of certain Riemannian manifolds admitting Codazzi tensors. Demonstr. Math. 1994, 27, 249–252. [Google Scholar]
- Liu, H.L.; Simon, U.; Wang, C.P. Codazzi tensor and the topology of surfaces. Ann. Global Anal. Geom. 1998, 16, 189–202. [Google Scholar] [CrossRef]
- Dajczer, M.; Tojeiro, R. Commuting Codazzi tensors and the Ribaucour transformation for submanifolds. Results Math. 2003, 44, 258–278. [Google Scholar] [CrossRef]
- Gabe, M. Codazzi tensors with two eigenvalue functions. Proc. Am. Math. Soc. 2012, 141, 3265–3273. [Google Scholar]
- Catino, G.; Mantegazza, C.; Mazzieri, L. A note on Codazzi tensors. Math. Ann. 2015, 362, 629–638. [Google Scholar] [CrossRef]
- Shandra, I.G.; Stepanov, S.E.; Mike, J. On higher-order Codazzi tensors on complete Riemannian manifolds. Ann. Glob. Anal. Geom. 2019, 56, 429–442. [Google Scholar] [CrossRef]
- Stepanov, S.E.; Tsyganok, I.I. Codazzi and Killing Tensors on a Complete Riemannian Manifold. Math. Notes 2021, 109, 932–939. [Google Scholar] [CrossRef]
- Etayo, F.; Santamaria, R. Distinguished connections on (J2 = ±1)-metric manifolds. Arch. Math. (Brno) 2016, 52, 159–203. [Google Scholar] [CrossRef]
- Calvaruso, G. Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 2007, 57, 1279–1291. [Google Scholar] [CrossRef]
- Cordero, L.A.; Parker, P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Mat. Appl. 1997, 17, 129–155. [Google Scholar]
- Wang, Y. Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. arXiv 2020, arXiv:2001.11656. [Google Scholar]
- Wu, T.; Wang, Y. Affine Ricci solitons associated to the Bott connection on three dimensional Lorentzian Lie groups. Turk. J. Math. 2021, 45, 26. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Y. Codazzi Tensors and the Quasi-Statistical Structure Associated with Affine Connections on Three-Dimensional Lorentzian Lie Groups. Symmetry 2021, 13, 1459. [Google Scholar] [CrossRef]
- Wang, Y. Affine connections and Gauss–Bonnet theorems in the Heisenberg group. arXiv 2021, arXiv:2021.01907. [Google Scholar]
- Balogh, Z.; Tyson, J.; Vecchi, E. Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group. Math. Z. 2017, 287, 1–38, Erratum in Math. Z. 2020, 296, 875–876. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Y. Gauss–Bonnet Theorems in the Lorentzian Heisenberg Group and the Lorentzian Group of Rigid Motions of the Minkowski Plane. Symmetry 2021, 13, 173. [Google Scholar] [CrossRef]
- Wu, T.; Wei, S.; Wang, Y. Gauss–Bonnet theorems and the Lorentzian Heisenberg group. Turk. J. Math. 2021, 45, 718–741. [Google Scholar] [CrossRef]
- Liu, H.; Miao, J.; Li, W.; Guan, J. The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss–Bonnet theorem in the rototranslation group. J. Math. 2021, 2021, 9981442. [Google Scholar] [CrossRef]
- Liu, H.M.; Miao, J.J. Gauss–Bonnet theorem in Lorentzian Sasakian space forms. AIMS Math. 2021, 6, 8772–8791. [Google Scholar] [CrossRef]
- Guan, J.Y.; Liu, H.M. The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss–Bonnet theorem in the group of rigid motions of Minkowski plane with general left-invariant metric. J. Funct. Space 2021, 2021, 1431082. [Google Scholar] [CrossRef]
- Liu, H.M.; Guan, J.Y. Sub-Lorentzian Geometry of Curves and Surfaces in a Lorentzian Lie Group. Adv. Math. Phys. 2022, 2022, 5396981. [Google Scholar] [CrossRef]
- Li, W.Z.; Liu, H.M. Gauss-Bonnet Theorem in the Universal Covering Group of Euclidean Motion Group E(2) with the General Left-Invariant Metric. J. Nonlinear Math. Phys. 2022, 29, 626–657. [Google Scholar] [CrossRef]
- Li, Y.L.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 574–589. [Google Scholar] [CrossRef]
- Li, Y.L.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Ali, R. A general inequality for CR-warped products in generalized Sasakian space form and its applications. Adv. Math. Phys. 2021, 2021, 5777554. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, Y.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 176, 104513. [Google Scholar] [CrossRef]
- Li, Y.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. [Google Scholar] [CrossRef]
- Li, Y.; Uçum, A.; İlarslan, K.; Camcı, Ç. A New Class of Bertrand Curves in Euclidean 4-Space. Symmetry 2022, 14, 1191. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the ϕ-Laplace operator on semislant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 1, 102. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics 2022, 10, 2530. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z. Lightlike tangent developables in de Sitter 3-space. J. Geom. Phys. 2021, 164, 104188. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, T. Geometric algebra of singular ruled surfaces. Adv. Appl. Clifford Al. 2021, 31, 19. [Google Scholar] [CrossRef]
Lorentzian Lie Groups | Conditions of Codazzi Tensors Associated with Yano Connections |
---|---|
No solution | |
permanent establishment | |
No solution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.; Yang, J.; Guan, J. Classification of Lorentzian Lie Groups Based on Codazzi Tensors Associated with Yano Connections. Symmetry 2022, 14, 1730. https://doi.org/10.3390/sym14081730
Miao J, Yang J, Guan J. Classification of Lorentzian Lie Groups Based on Codazzi Tensors Associated with Yano Connections. Symmetry. 2022; 14(8):1730. https://doi.org/10.3390/sym14081730
Chicago/Turabian StyleMiao, Jiajing, Jinli Yang, and Jianyun Guan. 2022. "Classification of Lorentzian Lie Groups Based on Codazzi Tensors Associated with Yano Connections" Symmetry 14, no. 8: 1730. https://doi.org/10.3390/sym14081730
APA StyleMiao, J., Yang, J., & Guan, J. (2022). Classification of Lorentzian Lie Groups Based on Codazzi Tensors Associated with Yano Connections. Symmetry, 14(8), 1730. https://doi.org/10.3390/sym14081730