A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups
Abstract
:1. Introduction
2. Some Preliminary Lemmas
3. A Symmetric Form of Mean Value Concerning
3.1. Evaluation of the Sum
3.2. Proof of Theorem 1
4. An Analogue of the Titchmarsh Divisor Problem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivic, A. The Riemann Zeta-Function; John Wiley and Sons: Hoboken, NJ, USA, 1985; pp. 413–420. [Google Scholar]
- Kratzel, E. Die maximale Ordnung der Anzahl der wesentlich verschiedenen Abelschen Gruppen n-ter Ordnung. Quart. J. Math. Oxford Ser. 1970, 21, 273–275. [Google Scholar]
- Erdos, P.; Szekeres, G. Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Scient. Math. Szeged. 1935, 7, 95–102. [Google Scholar]
- Schwarz, W. Über die Anzahl der Abelscher Gruppen gegebener Ordnung. I. Math. Z. 1966, 92, 314–320. [Google Scholar] [CrossRef]
- Schmidt, P.G. Zur Anzahl der Abelscher Gruppen gegebener Ordnung. J. Reine Angew. Math. 1968, 229, 34–42. [Google Scholar]
- Schmidt, P.G. Zur Anzahl der Abelscher Gruppen gegebener Ordnung. II. Acta Arith. 1968, 13, 405–417. [Google Scholar] [CrossRef]
- Kolesnik, G. On the number of Abelian groups of a given oeder. J. Reine Angew. Math. 1981, 329, 164–175. [Google Scholar]
- Robert, O.; Sargos, P. Three-dimensional exponential sums with monomials. J. Reine. Angew. Math. 2006, 591, 1–20. [Google Scholar] [CrossRef]
- Erdos, P.; Katai, I. On the growth of dk(n). Fibonacci Quart. 1969, 7, 267–274. [Google Scholar]
- Erdos, P.; Katai, I. On the sum d4(n). Acta Scien. Math. Szeged. 1969, 30, 313–324. [Google Scholar]
- Ivic, A. On the number of Abelian groups of a given order and on certain related multiplicative functions. J. Number Theory 1983, 16, 119–137. [Google Scholar] [CrossRef]
- Spiro, C. An iteration problem involving the divisor function. Acta Arith. 1986, 46, 215–225. [Google Scholar] [CrossRef]
- Ivic, A. An asymptotic formula involving the enumerating function of finite Abelian groups. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 1992, 3, 61–66. [Google Scholar]
- Fan, H.H.; Zhai, W.G. On some sums involving the counting function of non-isomorphic abelian groups. arXiv 2022, arXiv:2204.02576. [Google Scholar]
- Titchmarsh, E.C. A divisor problem. Rendiconti del Circolo Matematico di Palermo 1931, 54, 414–429. [Google Scholar] [CrossRef]
- Linnik, J.V. The Dispersion Method in Binary Additive Problems; American Mathematical Society: Providence, RI, USA, 1963. [Google Scholar]
- Fouvry, E. Sur le problème des diviseurs de Titchmarsh. J. Reine Angew. Math. 1984, 357, 51–76. [Google Scholar]
- Bombieri, E.; Friedlander, J.; Iwaniec, H. Primes in arithmetic progressions to large moduli. Acta Math. 1986, 156, 203–251. [Google Scholar] [CrossRef]
- Bateman, P.T.; Grosswald, E. On a theorem of Erdos and Szekeres. Illinois J. Math. 1958, 2, 88–98. [Google Scholar] [CrossRef]
- Pan, C.D.; Pan, C.B. Goldbach’s Conjecture; Science Press: Beijing, China, 1981. [Google Scholar]
- Ivic, A.; Tenenbaum, G. Local densities over integers free of large prime factors. Quart. J. Math. 1986, 2, 401–417. [Google Scholar] [CrossRef]
- Pan, C.D. Foundations of Number Theory; Higher Education Press: Beijing, China, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Zhai, W. A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups. Symmetry 2022, 14, 1755. https://doi.org/10.3390/sym14091755
Fan H, Zhai W. A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups. Symmetry. 2022; 14(9):1755. https://doi.org/10.3390/sym14091755
Chicago/Turabian StyleFan, Haihong, and Wenguang Zhai. 2022. "A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups" Symmetry 14, no. 9: 1755. https://doi.org/10.3390/sym14091755
APA StyleFan, H., & Zhai, W. (2022). A Symmetric Form of the Mean Value Involving Non-Isomorphic Abelian Groups. Symmetry, 14(9), 1755. https://doi.org/10.3390/sym14091755