Quantum Integral Inequalities in the Setting of Majorization Theory and Applications
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, T.W. Some inequalities for symmetric convex sets with applications. Ann. Stat. 1996, 24, 753–762. [Google Scholar] [CrossRef]
- Boltyanski, V.G.; Castro, J.J. Centrally symmetric convex sets. J. Convex Anal. 2007, 14, 345–351. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen–Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Ali, M.M.; Khan, A.R. Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 2019, 10, 60–76. [Google Scholar]
- Butt, S.I.; Kashuri, A.; Umar, M.; Aslam, A.; Gao, W. Hermite–Jensen–Mercer type inequalities via ψ-Riemann-Liouville k-fractional integrals. AIMS Math. 2020, 5, 5193–5220. [Google Scholar] [CrossRef]
- Butt, S.I.; Umar, M.; Rashid, S.; Akdemir, A.O.; Chu, Y.M. New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 635. [Google Scholar] [CrossRef]
- HChu, H.; Rashid, S.; Hammouch, Z.; Chu, Y.M. New fractional estimates for Hermite–Hadamard-Mercer’s type inequalities. Alex. Eng. J. 2020, 59, 3079–3089. [Google Scholar]
- Ogulmus, H.; Sarikaya, M.Z. Hermite–Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ.-Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Abbas, M.A.; Chen, L.; Khan, A.R.; Muhammad, G.; Sun, B.; Hussain, S.; Rasool, A.U. Some new Anderson type h and q integral inequalities in quantum calculus. Symmetry 2022, 14, 1294. [Google Scholar] [CrossRef]
- Arunrat, N.; Nakprasit, K.M.; Nonlaopon, K.; Agarwal, P.; Ntouyas, S.K. Post-Quantum Chebyshev-type integral inequalities for synchronous functions. Mathematics 2022, 10, 468. [Google Scholar] [CrossRef]
- Almutairi, O.B. Quantum estimates for different type intequalities through generalized convexity. Entropy 2022, 24, 728. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M. (q1, q2)-Ostrowski-type integral inequalities involving property of generalized higher–order strongly n–polynomial preinvexity. Symmetry 2022, 14, 717. [Google Scholar] [CrossRef]
- Kunt, M.; Aljasem, M. Fractional quantum Hermite–Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Zhang, Y.; Du, T.-S.; Wang, H.; Shen, Y.-J. Different types of quantum integral inequalities via (α, m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H. On quantum Hermite–Jensen–Mercer Inequalities, Submitted. 2020. Available online: https://www.researchgate.net/publication/347834994 (accessed on 31 July 2022).
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Latif, N.; Pecaric, J.; Peric, I. On discrete Farvald’s and Bervald’s inequalities. Commun. Math. Anal. 2012, 12, 34–57. [Google Scholar]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Iqbal, S. Generalized Hermite–Hadamard-Mercer type inequalities via majorization. Filomat 2022, 36, 469–483. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The size-dependent thermoelastic vibrations of nanobeams subjepcted to harmonic excitation and rectified sine wave heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Zhang, L.; Bhatti, M.M.; Michaelides, E.E.; Marin, M.; Ellahi, R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur. Phys. J. Spec. Top. 2022, 231, 521–533. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. Inequalities: Theory of Majorization and Its Applications; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Dragomir, S.S. Some majorisation type discrete inequalities for convex functions. Math. Inequal. Appl. 2004, 7, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Siddique, N.; Imran, M.; Khan, K.A.; Pecaric, J. Difference equations related to majorization theorems via Montgomery identity and Green’s functions with application to the Shannon entropy. Adv. Differ. Equ. 2020, 2020, 430. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Khna, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New conticrete Hermite–Hadamard–Jensen–Mercer fractional inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Budak, H.; Kara, H.; Noor, M.A. Quantum Integral Inequalities in the Setting of Majorization Theory and Applications. Symmetry 2022, 14, 1925. https://doi.org/10.3390/sym14091925
Bin-Mohsin B, Javed MZ, Awan MU, Budak H, Kara H, Noor MA. Quantum Integral Inequalities in the Setting of Majorization Theory and Applications. Symmetry. 2022; 14(9):1925. https://doi.org/10.3390/sym14091925
Chicago/Turabian StyleBin-Mohsin, Bandar, Muhammad Zakria Javed, Muhammad Uzair Awan, Hüseyin Budak, Hasan Kara, and Muhammad Aslam Noor. 2022. "Quantum Integral Inequalities in the Setting of Majorization Theory and Applications" Symmetry 14, no. 9: 1925. https://doi.org/10.3390/sym14091925
APA StyleBin-Mohsin, B., Javed, M. Z., Awan, M. U., Budak, H., Kara, H., & Noor, M. A. (2022). Quantum Integral Inequalities in the Setting of Majorization Theory and Applications. Symmetry, 14(9), 1925. https://doi.org/10.3390/sym14091925