Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations
Abstract
:1. Introduction
2. Materials and Methods
3. Structure of the Studied Sample
3.1. Tetrachiral Structure
3.2. Topological Arrangement of Tetrachiral Elements in a Unit Cell
4. Results and Discussion
4.1. Twisting
- Nodal points A, B, C, and D (K, L, M, and N) are fixed subject to the given boundary conditions,
- Nodal points A′, B′, C′, and D′ (K′, L′, M′, and N′) move along the Y axis in accordance with the boundary conditions and are displaced in the XZ plane.
4.2. Effect of the Topological Defect on Unit Cell Behavior along Three Orthogonal Axes
4.3. Effective Poisson’s Ratio
4.4. Effective Young’s Modulus
4.5. Equivalent Stress Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, A.; Kiuno, H.; Kubo, A.; D’Addona, D.M. A system for designing and 3D printing of porous structures. CIRP Ann. 2020, 69, 113–116. [Google Scholar] [CrossRef]
- Hanks, B.; Berthel, J.; Frecker, M.; Simpson, T.W. Mechanical properties of additively manufactured metal lattice structures: Data review and design interface. Addit. Manuf. 2020, 35, 101301. [Google Scholar] [CrossRef]
- Ji, S.; Gu, Q.; Xia, B. Porosity dependence of mechanical properties of solid materials. J. Mater. Sci. 2006, 41, 1757–1768. [Google Scholar] [CrossRef]
- Pan, C.; Han, Y.; Lu, J. Design and Optimization of Lattice Structures: A Review. Appl. Sci. 2020, 10, 6374. [Google Scholar] [CrossRef]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Seto, Y.; Ullah, S.; Kubo, A.; D’Addona, D.M.; Teti, R. On the Porous Structuring using Unit Cells. Procedia CIRP 2021, 99, 381–386. [Google Scholar] [CrossRef]
- Akhmetshin, L.R.; Smolin, I.Y. Influence of unit cell parameters of tetrachiral mechanical metamaterial on its effective properties. Nanosci. Technol. Int. J. 2020, 11, 265–273. [Google Scholar] [CrossRef]
- Meeussen, A.S.; Oğuz, E.C.; Shokef, Y.; Hecke, M. Topological defects produce exotic mechanics in complex metamaterials. Nat. Phys. 2019, 16, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Meeussen, A.S.; Oğuz, E.C.; Hecke, M.; Shokef, Y. Response evolution of mechanical metamaterials under architectural transformations. New J. Phys. 2020, 22, 023030. [Google Scholar] [CrossRef]
- Akhmetshin, L.R.; Smolin, I.Y. Analysis of Stress and Strain in the Tetrachiral Metamaterial with Different Kinds of Unit Cell Connections. Procedia Struct. Integr. 2022, 35, 247–253. [Google Scholar] [CrossRef]
- Frenzel, T.; Kadic, M.; Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 2017, 358, 1072–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryukhanov, I.A.; Gorodtsov, V.A.; Lisovenko, D.S. Atomistic Modeling of the Mechanical Properties of Chiral Metallic Nanotubes. Phys. Mesomech. 2020, 23, 477–486. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 2019, 21, 1800864. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Seo, D.; Kim, D.N. Mechanics of Auxetic Materials. In Handbook of Mechanics of Materials; Schmauder, S., Chen, C.S., Chawla, K., Chawla, N., Chen, W., Kagawa, Y., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Ha, C.S.; Plesha, M.E.; Lakes, R.S. Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater. Struct. 2016, 25, 054005. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zheng, B.; Li, W. A novel chiral three-dimensional material with negative Poisson’s ratio and the equivalent elastic parameters. Compos. Struct. 2017, 176, 442–448. [Google Scholar] [CrossRef]
- Fu, M.; Liu, F.; Hu, L. A novel category of 3D chiral material with negative Poisson’s ratio. Compos. Sci. Technol. 2018, 160, 111–118. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Mousanezhad, D.; Nayeb-Hashemi, H.; Norato, J.; Vaziri, A. 3D cellular metamaterials with planar anti-chiral topology. Mater. Des. 2018, 145, 226–231. [Google Scholar] [CrossRef]
- Duan, S.; Xi, L.; Wen, W.; Fang, D. A novel design method for 3D positive and negative Poisson’s ratio material based on tension-twist coupling effects. Compos. Struct. 2020, 236, 111899. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Sabouni-Zawadzka, A.A.; Gilewski, W. Smart Metamaterial Based on the Simplex Tensegrity Pattern. Materials 2018, 11, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, Y. Novel 3D-Printed Hybrid Auxetic Mechanical Metamaterial with Chirality-Induced Sequential Cell Opening Mechanisms. Adv. Eng. Mater. 2017, 20, 1700744. [Google Scholar] [CrossRef]
- Zhong, R.; Zheng, B.; Fu, M. A Novel Strategy for Constructing 3D Dislocated Chiral Metamaterial with Negative Poisson’s Ratio. Adv. Eng. Mater. 2021, 23, 2000991. [Google Scholar] [CrossRef]
- Sang, S.; Wang, Z. A design of elastic metamaterials with multi-negative pass bands. Acta Mech. 2018, 229, 2647–2655. [Google Scholar] [CrossRef]
- Mizzi, L.; Spaggiari, A. Novel chiral honeycombs based on octahedral and dodecahedral Euclidean polygonal tessellations. Int. J. Solids Struct. 2022, 238, 111428. [Google Scholar] [CrossRef]
- Zheng, B.-B.; Zhong, R.-C.; Chen, X.; Fu, M.-H.; Hu, L.-L. A novel metamaterial with tension-torsion coupling effect. Mater. Des. 2019, 171, 107700. [Google Scholar] [CrossRef]
- Zhong, R.; Fu, M.; Chen, X.; Zheng, B.; Hu, L. A novel three-dimensional mechanical metamaterial with compression torsion properties. Compos. Struct. 2019, 226, 111232. [Google Scholar] [CrossRef]
- Ziemke, P.; Frenzel, T.; Wegener, M.; Gumbsch, P. Tailoring the characteristic length scale of 3D chiral mechanical metamaterials. Extrem. Mech. Lett. 2019, 32, 100553. [Google Scholar] [CrossRef]
- Dong, J.; Chen, W.; Zeng, Z.; Qin, Q.-H.; Xiao, Y. Analysis of wave band gaps in mechanical metamaterial based on Nelder–Mead method. Eng. Anal. Bound. Elem. 2019, 103, 109–115. [Google Scholar] [CrossRef]
- Chen, W.; Huang, X. Topological design of 3D chiral metamaterials based on couple-stress homogenization. J. Mech. Phys. Solids 2019, 131, 372–386. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, Y.; Liu, J.; Yin, S.; Xu, J. Novel mechanical behaviors of DNA-inspired helical structures with chirality. Int. J. Mech. Sci. 2019, 161–162, 105025. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Lu, Z. Design 3D metamaterials with compression-induced-twisting characteristics using shear–compression coupling effects. Extrem. Mech. Lett. 2019, 29, 100471. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.-T. 3D compression–torsion cubic mechanical metamaterial with double inclined rods. Extrem. Mech. Lett. 2020, 37, 100706. [Google Scholar] [CrossRef]
- Wang, L.; An, M.-R.; Liu, H.-T. Compression spin bio-inspired arm: A conceptual model based on compression–torsion cubic mechanical metamaterials with variable cross-section. Extrem. Mech. Lett. 2020, 41, 101069. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H. Band gap mechanism and vibration attenuation characteristics of the quasi-one-dimensional tetra-chiral metamaterial. Eur. J. Mech.—A/Solids 2022, 92, 104478. [Google Scholar] [CrossRef]
- Shahsavar, M.M.; Akrami, M.; Gheibi, M.; Kavianpour, B.; Fathollahi-Fard, A.M.; Behzadian, K. Constructing a smart framework for supplying the biogas energy in green buildings using an integration of response surface methodology, artificial intelligence and petri net modelling. Energy Convers. Manag. 2021, 248, 114794. [Google Scholar] [CrossRef]
- Ni, S.; Liu, H.; Li, Q.; Quan, H.; Gheibi, M.; Fathollahi-Fard, A.M.; Tian, G. Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. J. Clean. Prod. 2022, 365, 132780. [Google Scholar] [CrossRef]
- Asghari, M.; Fathollahi-Fard, A.M.; Mirzapour Al-e-hashem, S.M.J.; Dulebenets, M.A. Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey. Mathematics 2022, 10, 283. [Google Scholar] [CrossRef]
- Gheibi, M.; Eftekhari, M.; Tabrizi, M.G.; Fathollahi-Fard, A.M.; Tian, G. Mechanistic evaluation of cationic dyes adsorption onto low cost calcinated aerated autoclaved concrete wastes. Int. J. Environ. Sci. Technol. 2021, 19, 6429–6444. [Google Scholar] [CrossRef]
- Akhmetshin, L.R.; Smolin, I.Y. Analysis of some methods of integration of cells in a mechanical metamaterial. Tomsk. State Univ. J. Math. Mech. 2022, 77, 27–37. [Google Scholar] [CrossRef]
- Wilkins, M.L. Computer Simulation of Dynamic Phenomena; Springer: Berlin, Germany, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetshin, L.; Iokhim, K.; Kazantseva, E.; Smolin, I. Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations. Symmetry 2023, 15, 14. https://doi.org/10.3390/sym15010014
Akhmetshin L, Iokhim K, Kazantseva E, Smolin I. Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations. Symmetry. 2023; 15(1):14. https://doi.org/10.3390/sym15010014
Chicago/Turabian StyleAkhmetshin, Linar, Kristina Iokhim, Ekaterina Kazantseva, and Igor Smolin. 2023. "Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations" Symmetry 15, no. 1: 14. https://doi.org/10.3390/sym15010014
APA StyleAkhmetshin, L., Iokhim, K., Kazantseva, E., & Smolin, I. (2023). Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations. Symmetry, 15(1), 14. https://doi.org/10.3390/sym15010014