ID-Based Ring Signature against Continual Side Channel Attack
Abstract
:1. Introduction
1.1. Related Works
1.1.1. Safety Model about Leakage Resilience
1.1.2. Signature with Leakage Resilience
1.2. Ring Signature and Our Contributions
2. Preliminary Knowledge
2.1. Some Marks
2.2. Composite Order Bilinear Group
2.3. Assumptions
3. Formal Description and Security Model
3.1. Formal Description
3.2. Security Definition
4. Ring Signature Scheme against Persistent Leakage
5. Safety Proof
6. Continual Leakage Resilience
7. Leakage Performance Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Won, Y.-S.; Chatterjee, S.; Jap, D.; Bhasin, S.; Basu, A. Time to leak: Cross-device timing attack on edge deep learning accelerator. In Proceedings of the 2021 IEEE International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 31 January–3 February 2021. [Google Scholar]
- Won, Y.S.; Chatterjee, S.; Jap, D.; Basu, A.; Bhasin, S. WaC: First results on practical side-channel attacks on commercial machine learning accelerator. In Proceedings of the 5th Workshop on Attacks and Solutions in Hardware Security, Virtual Event, Republic of Korea, 19 November 2021. [Google Scholar]
- Dubey, A.; Cammarota, R.; Aysu, A. Maskednet: The first hardware inference engine aiming power side-channel protection. In Proceedings of the IEEE 2020 International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, CA, USA, 7–11 December 2020. [Google Scholar]
- Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Horn, J.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; et al. Meltdown: Reading kernel memory from user space. In Proceedings of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018. [Google Scholar]
- Halderman, J.A.; Schoen, S.D.; Heninger, N.; Clarkson, W.; Paul, W.; Calandrino, J.A.; Feldman, A.J.; Appelbaum, J.; Felten, E.W. Lest we remember: Cold-boot attacks on encryption keys. Commun. ACM 2009, 52, 91–98. [Google Scholar] [CrossRef]
- De Souza, F.G.; Kim, H.Y. Differential audio analysis: A new side-channel attack on PIN pads. Int. J. Inf. Secur. 2019, 18, 73–84. [Google Scholar] [CrossRef]
- Dai, L.; Dong, G.F.; Hu, H.G.; Yu, N.H. Side-channel attack against real RFID tags. J. Cryptologic Res. 2019, 6, 383–394. [Google Scholar]
- Jauvart, D.; Fournier, J.J.; El-Mrabet, N.; Goubin, L. Improving side-channel attacks against pairing-based cryptography. J. Cryptogr. Eng. 2020, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Akavia, A.; Goldwasser, S.; Vaikuntanathan, V. Simultaneous hardcore bits and cryptography against memory attacks. In Proceedings of the Sixth Theory of Cryptography Conference (TCC 2009), San Francisco, CA, USA, 15–17 March 2009. [Google Scholar]
- Guo, Y.; Li, J.; Lu, Y.; Zhang, Y.; Zhang, F. Provably secure certificate-based encryption with leakage resilience. Theor. Comput. Sci. 2018, 711, 1–10. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Zhang, Y.; Wu, W.; Huang, X.; Xiang, Y. Certificate-based encryption resilient to key leakage. J. Syst. Softw. 2016, 116, 101–112. [Google Scholar] [CrossRef]
- Li, J.; Teng, M.; Zhang, Y.; Yu, Q. A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 2016, 59, 1066–1075. [Google Scholar] [CrossRef]
- Brakerski, Z.; Kalai, Y.T.; Katz, J.; Vaikuntanathan, V. Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In Proceedings of the IEEE 2010 51st Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 23–26 October 2010. [Google Scholar]
- Dodis, Y.; Haralambiev, K.; López-Alt, A.; Wichs, D. Cryptography against continuous memory attacks. In Proceedings of the 51st Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 23–26 October 2010. [Google Scholar]
- Li, J.; Yu, Q.; Zhang, Y. Key-policy attribute-based encryption against continual auxiliary input leakage. Inf. Sci. 2019, 470, 175–188. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Zhang, Y. Hierarchical attribute based encryption with continuous leakage-resilience. Inf. Sci. 2019, 484, 113–134. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Yu, Q.; Lu, Y.; Zhang, Y.; Zhang, F. Continuous leakage-resilient certificate-based encryption. Inf. Sci. 2016, 355–356, 1–14. [Google Scholar] [CrossRef]
- Naor, M.; Segev, G. Public-key cryptosystems resilient to key leakage. SIAM J. Comput. 2012, 41, 772–814. [Google Scholar] [CrossRef]
- Katz, J.; Vaikuntanathan, V. Signature schemes with bounded leakage resilience. In Proceedings of the 15th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2009), Tokyo, Japan, 6–10 December 2009. [Google Scholar]
- Dodis, Y.; Kalai, Y.T.; Lovett, S. On cryptography with auxiliary input. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009. [Google Scholar]
- Wang, Y.; Tanaka, K. Generic transformations for existentially unforgeable signature schemes in the bounded leakage model. Secur. Commun. Netw. 2016, 9, 1829–1842. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Q.; Susilo, W. Leakage-resilient group signature: Definitions and constructions. Inf. Sci. 2020, 509, 119–132. [Google Scholar] [CrossRef]
- Tseng, Y.M.; Wu, J.D.; Huang, S.S.; Tsai, T.T. Leakage-resilient outsourced revocable certificateless signature with a cloud revocation server. Inf. Technol. Control 2020, 49, 464–481. [Google Scholar] [CrossRef]
- Galindo, D.; Vivek, S. A practical leakage-resilient signature scheme in the generic group model. In Proceedings of the 2012 International Conference on Selected Areas in Cryptography (SAC 2012), Windsor, ON, Canada, 15–16 August 2012. [Google Scholar]
- Boyle, E.; Segev, G.; Wichs, D. Fully leakage-resilient signatures. J. Cryptol. 2013, 26, 513–558. [Google Scholar] [CrossRef] [Green Version]
- Faust, S.; Hazay, C.; Nielsen, J.B.; Nordholt, P.S.; Zottarel, A. Signature schemes secure against hard-to-invert leakage. J. Cryptol. 2016, 29, 422–455. [Google Scholar] [CrossRef]
- Yuen, T.H.; Yiu, S.M.; Hui, L.C.K. Fully leakage-resilient signatures with auxiliary inputs. In Proceedings of the 17th Australasian Conference on Information Security and Privacy (ACISP 2012), Wollongong, Australia, 9–11 July 2012. [Google Scholar]
- Rivest, R.L.; Shamir, A.; Tauman, Y. How to leak a secret. In Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2001), Gold Coast, Australia, 9–13 December 2001. [Google Scholar]
- Gu, K.; Dong, X.; Wang, L. Efficient traceable ring signature scheme without pairings. Adv. Math. Commun. 2020, 14, 207–232. [Google Scholar] [CrossRef] [Green Version]
- Noether, S. Ring signature condential transactions for monero. IACR Cryptol. Eprint Arch. 2015, 2015, 1098. Available online: https://eprint.iacr.org/2015/1098 (accessed on 1 August 2022).
- Liu, J.K.; Wei, V.K.; Wong, D.S. Linkable spontaneous anonymous group signature for ad hoc groups. In Proceedings of the 2004 Australasian Conference on Information Security and Privacy (ACISP 2004), Sydney, Australia, 13–15 July 2004. [Google Scholar]
- Li, J.; Chen, Y.; Han, J.; Liu, C.; Zhang, Y.; Wang, H. Decentralized attribute-based server-aid signature in the internet of things. IEEE Internet Things J. 2022, 9, 4573–4583. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Liu, C.; Han, J.; Zhang, Y.; Yi, P. Efficient attribute based server-aided verification signature. IEEE Trans. Serv. Comput. 2021, 15, 3224–3232. [Google Scholar] [CrossRef]
- Siao, T.-C.; Wu, Z.-Y.; Liu, C.-H.; Chung, Y.-F. Electronic voting systems for defending free will and resisting bribery and coercion based on ring anonymous signcryption scheme. Adv. Mech. Eng. 2017, 9, 1–9. [Google Scholar]
- Ren, H.; Zhang, P.; Shentu, Q.; Liu, J.K.; Yuen, T.H. Compact ring signature in the standard model for blockchain. In Proceedings of the 14th International Conference on Information Security Practice and Experience (ISPEC 2018), Tokyo, Japan, 25–27 September 2018. [Google Scholar]
- Wang, H.; Wu, Q.; Qin, B.; Zhang, F.; Domingo-Ferrer, J. A provably secure ring signature scheme with bounded leakage resilience. In Proceedings of the 10th International Conference on Information Security Practice and Experience (ISPEC 2014), Fuzhou, China, 5–8 May 2014. [Google Scholar]
- Au, M.H.; Liu, J.K.; Susilo, W.; Zhou, J. Realizing fully secure unrestricted ID-based ring signature in the standard model based on HIBE. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1909–1922. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Lai, Q.; Yu, Y.; Yang, B.; Zhao, Y. ID-Based Ring Signature in the Standard Model. Acta Electron. Sin. 2018, 46, 1019–1024. [Google Scholar]
- Li, J.; Yu, Q.; Zhang, Y. Identity-based broadcast encryption with continuous leakage resilience. Inf. Sci. 2018, 429, 177–193. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Qiao, Z.; Yang, B.; Zhang, M. Continuous leakage-resilient certificate-based signcryption scheme and application in cloud computing. Theor. Comput. Sci. 2021, 860, 1–22. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Ji, S. Fully secure ID-based signature scheme with continuous leakage-resilience. Secur. Commun. Netw. 2022, 2022, 8220259. [Google Scholar] [CrossRef]
- De Caro, A.; Iovino, V. JPBC: Java pairing based cryptography. In Proceedings of the 2011 IEEE Symposium on Computers and Communications (ISCC), Kerkyra, Greece, 28 June–1 July 2011. [Google Scholar]
Schemes | Models | Assumptions | Continuous Leakage Resilience | Leakage Models | Security |
---|---|---|---|---|---|
[13]-1 | Standard Model | SXDH | Yes | CLM | LR |
[13]-2 | Standard Model | NIZK | Yes | CLM | LR |
[13]-3 | Standard Model | K-Linear | Yes | CLM | LR |
[19]-1 | Standard Model | UOWHF | No | BLM | LR |
[19]-2 | Standard Model | UOWHF | No | BLM | FLR |
[19]-3 | Standard Model | HCRHF | No | BLM | FLR |
[25] | Standard Model | SPR, SNIWI | Yes | BLM | FLR |
[26]-1 | WAI | PHTIF | No | AIM | LR |
[26]-2 | AIM | EHTIF | No | AIM | LR |
[27] | SAI | AIF, PHTIF | Yes | AIM | FLR |
Symbols | Descriptions |
---|---|
A bilinear group generation algorithm | |
Bilinear group description | |
, | Two cyclic groups with order |
Bilinear mapping | |
LR | Leakage resilient |
CLR | Continuous leakage resilient |
Start | System’s initialization algorithm |
Extract | Private key generation algorithm |
KeyU | Private key updation algorithm |
Sign | Signature algorithm |
Verify | Signature verification algorithm |
, , | Subgroups in with order and |
The safety parameter | |
Random value of | |
Random values of | |
Random values of | |
System parameters | |
Master key | |
The private key of identity | |
The updation private key of identity | |
A collision resistant hash function | |
A message | |
The identity set of ring signature | |
Ring signature | |
The real security game | |
The leakage bound of a private key | |
The adversary | |
The simulator |
Ours Scheme | [36] | [38] | [37] | |
---|---|---|---|---|
Model | SDM | RO | SDM | SDM |
Assumption | GSD | S- | GSD | GSD |
Leakage Resilience | √ | √ | × | × |
CLR | √ | × | × | × |
Start | ||||
Extract | ||||
Sign | ||||
Verify |
2 | 3 | 4 | 5 | …. | … | ||
---|---|---|---|---|---|---|---|
leakage rate | …. | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Li, J.; Shen, J. ID-Based Ring Signature against Continual Side Channel Attack. Symmetry 2023, 15, 179. https://doi.org/10.3390/sym15010179
Yu Q, Li J, Shen J. ID-Based Ring Signature against Continual Side Channel Attack. Symmetry. 2023; 15(1):179. https://doi.org/10.3390/sym15010179
Chicago/Turabian StyleYu, Qihong, Jiguo Li, and Jian Shen. 2023. "ID-Based Ring Signature against Continual Side Channel Attack" Symmetry 15, no. 1: 179. https://doi.org/10.3390/sym15010179
APA StyleYu, Q., Li, J., & Shen, J. (2023). ID-Based Ring Signature against Continual Side Channel Attack. Symmetry, 15(1), 179. https://doi.org/10.3390/sym15010179