Noether Symmetries and Conservation Laws in Static Cylindrically Symmetric Spacetimes via Rif Tree Approach
Abstract
:1. Introduction
2. Noether Symmetry Equations and the Rif Tree
3. Four Noether Symmetries
4. Five Noether Symmetries
5. Six Noether Symmetries
6. Nine Noether Symmetries
7. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: London, UK, 2004. [Google Scholar]
- Maartens, R.; Maharaj, S.D. Conformal symmetries of pp-waves. Class. Quantum Gravity 1991, 8, 503. [Google Scholar] [CrossRef]
- Moopanar, S.; Maharaj, S.D. Relativistic shear-free fluids with symmetry. Relativistic shear-free fluids with symmetry. J. Eng. Math. 2013, 82, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, K.; Yazdan, S. Conformal motions in plane symmetric static space-times. Int. J. Mod. Phys. D 2009, 18, 71–81. [Google Scholar] [CrossRef]
- Maartens, R.; Maharaj, S.D.; Tupper, B.O.J. General solution and classification of conformal motions in static spherical spacetimes. Class. Quantum Gravity 1995, 12, 2577. [Google Scholar] [CrossRef]
- Moopanar, S.; Maharaj, S.D. Conformal Symmetries of Spherical Spacetimes. Int. J. Theor. Phys. 2010, 49, 1878. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hussain, T.; Bokhari, A.H.; Khan, G.A. Conformal Killing vectors in LRS Bianchi type V spacetimes. Commun. Theor. Phys. 2016, 65, 315. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, T.; Bokhari, A.H.; Khan, G.A. Conformal Killing vectors of plane symmetric four dimensional Lorentzian manifolds. Eur. Phys. J. C 2015, 75, 523. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Khan, S.; Bokhari, A.H.; Khan, G.A. Proper conformal Killing vectors in static plane symmetric space-times. Theor. Math. Phys. 2017, 191, 620–629. [Google Scholar] [CrossRef]
- Hussain, T.; Farhan, M. Proper conformal Killing vectors in Kantowski-Sachs metric. Commun. Theor. Phys. 2018, 69, 393. [Google Scholar] [CrossRef]
- Noether, E. Invariant variations problems. Transp. Theory Stat. Phys. 1971, 1, 186. [Google Scholar] [CrossRef]
- Hickman, M.; Yazdan, S. Noether symmetries of Bianchi type II spacetimes. Gen. Relativ. Gravit. 2017, 49, 65. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Kara, A.H. Noether versus Killing symmetry of conformally flat Friedmann metric. Gen. Relativ. Gravit. 2007, 39, 2053–2059. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Kara, A.H.; Kashif, A.R.; Zaman, F.D. Noether symmetries versus Killing vectors and isometries of spacetimes. Int. J. Theor. Phys. 2006, 45, 1029–1039. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T. Classification of plane symmetric static space-times according to their Noether symmetries. Int. J. Theor. Phys. 2013, 52, 3329–3342. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T.; Ali, S. Complete classification of spherically symmetric static space-times via Noether symmetries. Theor. Math. Phys. 2015, 184, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Hussain, I. A study of positive energy condition in Bianchi V spacetimes via Noether symmetries. Eur. Phys. J. C 2016, 76, 63. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Hussain, T.; Santina, D.; Mlaiki, N. Homothetic Symmetries of Static Cylindrically Symmetric Spacetimes—A Rif Tree Approach. Axioms 2022, 11, 506. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T. Complete classification of cylindrically symmetric static spacetimes and the corresponding conservation laws. Mathematics 2016, 4, 50. [Google Scholar] [CrossRef]
No/Branch | Metric | Additional Symmetry and Gauge Function | Conserved Quantity |
---|---|---|---|
5a | |||
1 | |||
where | |||
and for | |||
5b | |||
4 | where and for | ||
5c | |||
5 | where | ||
and | |||
5d | , | ||
6 | where | ||
5e | , | ||
7 | where | ||
5f | , | ||
8 | where | ||
5g | , | ||
9 | where | ||
5h | |||
12 | , | ||
where for | |||
5i | , | ||
16 | |||
where | |||
5j | , | ||
17 | |||
where | |||
5k | , | ||
17 | |||
where | |||
5l | , | ||
18 | |||
where |
No/Branch | Metric | Additional Symmetry and Gauge Function | Conserved Quantity |
---|---|---|---|
5m | |||
21 | , | ||
where and for | |||
5n | , | ||
26 | |||
where for | |||
5o | , | ||
28 | , | ||
5p | , | ||
29 | , | ||
5q | , | ||
30 | , | ||
where for | |||
5r | , | ||
30 | , | ||
where for | |||
5s | , | ||
30 | , | ||
where for | |||
5t | , | ||
30 | , | ||
where for | |||
5u | , | ||
31 | , | ||
where for | |||
5v | , | ||
31 | , | ||
where for |
No/Branch No | Metric | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
6a | , | ||
6 | where | ||
and for | |||
6b | |||
10 | where and | , | |
6c | , | ||
14 | where and | , | |
6d | , | ||
15 | where | ||
and for | |||
6e | , | ||
16 | where and | , | |
6f | |||
19 | where and | ||
6g | , | ||
23 | where and | , | |
6h | , | ||
27 | where and | ||
6i | , | ||
28 | where | ||
and for | |||
6j | , | ||
29 | where and | , | |
6k | , | ||
32 | where |
No/Branch | Metric | Additional Symmetries | Conserved Quantities |
---|---|---|---|
9a | |||
11 | |||
, | |||
where | |||
and | |||
9b | |||
20 | |||
, | |||
where | |||
and | |||
9c | |||
33 | |||
, | |||
where | |||
and | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhan, M.; Subhi Aiadi, S.; Hussain, T.; Mlaiki, N. Noether Symmetries and Conservation Laws in Static Cylindrically Symmetric Spacetimes via Rif Tree Approach. Symmetry 2023, 15, 184. https://doi.org/10.3390/sym15010184
Farhan M, Subhi Aiadi S, Hussain T, Mlaiki N. Noether Symmetries and Conservation Laws in Static Cylindrically Symmetric Spacetimes via Rif Tree Approach. Symmetry. 2023; 15(1):184. https://doi.org/10.3390/sym15010184
Chicago/Turabian StyleFarhan, Muhammad, Suhad Subhi Aiadi, Tahir Hussain, and Nabil Mlaiki. 2023. "Noether Symmetries and Conservation Laws in Static Cylindrically Symmetric Spacetimes via Rif Tree Approach" Symmetry 15, no. 1: 184. https://doi.org/10.3390/sym15010184
APA StyleFarhan, M., Subhi Aiadi, S., Hussain, T., & Mlaiki, N. (2023). Noether Symmetries and Conservation Laws in Static Cylindrically Symmetric Spacetimes via Rif Tree Approach. Symmetry, 15(1), 184. https://doi.org/10.3390/sym15010184