Noether Symmetries and Conservation Laws in Non-Static Plane Symmetric Spacetime
Abstract
:1. Introduction
2. Determining Equations
3. Four Noether Symmetries
4. Five Noether Symmetries
5. Six Noether Symmetries
6. Seven Noether Symmetries
7. Eight Noether Symmetries
8. Nine Noether Symmetries
9. Eleven Noether Symmetries
10. Seventeen Noether Symmetries
11. Physical Implications
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hall, G.S. Symmetries and Curvature Structure in General Relativity; World Scientific: London, UK, 2004. [Google Scholar]
- Feroze, T.; Qadir, A.; Ziad, M. The classification of plane symmetric spacetimes by isometries. J. Math. Phys. 2001, 42, 4947. [Google Scholar] [CrossRef]
- Deshmukh, S.; Belova, O. On killing vector fields on Riemannian manifolds. Sigma Math. 2021, 9, 259. [Google Scholar] [CrossRef]
- Nikonorov, Y.G. Spectral properties of Killing vector fields of constant length. J. Geom. Phys. 2019, 145, 103485. [Google Scholar] [CrossRef] [Green Version]
- Bokhari, A.H.; Qadir, A. Killing vectors of static spherically symmetric metrics. J. Math. Phys. 1990, 31, 1463. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Qadir, A. Symmetries of static, spherically symmetric spacetimes. J. Math. Phys. 1987, 28, 1019. [Google Scholar] [CrossRef]
- Ahmad, D.; Ziad, M. Homothetic motions of spherically symmetric spacetimes. J. Math. Phys. 1997, 38, 2547. [Google Scholar] [CrossRef]
- Hall, G.S.; Steele, J.D. Homothety groups in space-time. Gen. Relativ. Gravit. 1990, 22, 457. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Hussain, T.; Khan, J.; Nasib, U. Proper homothetic vector fields of Bianchi type I spacetimes via Rif tree approach. Results Phys. 2021, 25, 104292. [Google Scholar] [CrossRef]
- Usmani, A.A.; Rahaman, F.; Ray, S.; Nandi, K.K.; Kuhfittig, P.K.F.; Rakib, S.A.; Hasan, Z. Charged gravastars admitting conformal motion. Phys. Lett. B 2011, 701, 388. [Google Scholar] [CrossRef] [Green Version]
- Moopanar, S.; Maharaj, S.D. Conformal symmetries of spherical spacetimes. Int. J. Theor. Phys. 2010, 49, 1878. [Google Scholar] [CrossRef]
- Maartens, R.; Maharaj, S.D. Conformal killing vectors in Robertson-Walker spacetimes. Class. Quantum Gravit. 1986, 3, 1005. [Google Scholar] [CrossRef]
- Saifullah, K.; Azdan, S.Y. Conformal motions in plane symmetric static space–times. Int. J. Mod. Phys. D 2009, 18, 71. [Google Scholar] [CrossRef]
- Coley, A.A.; Tupper, B.O.J. Spherically symmetric spacetimes admitting inheriting conformal Killing vector fields. Class. Quantum Gravit. 1990, 7, 2195. [Google Scholar] [CrossRef]
- Maartens, R.; Mason, D.P.; Tsamparlis, M. Kinematic and dynamic properties of conformal Killing vectors in anisotropic fluids. J. Math. Phys. 1986, 27, 2987. [Google Scholar] [CrossRef]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Wafo, S.C.; Mahomed, F.M. Linearization criteria for a system of second-order ordinary differential equations. Int. J. Non-Linear Mech. 2001, 36, 671. [Google Scholar]
- Ibragimov, N.H.; Maleshko, S.V. Linearization of third-order ordinary differential equations by point and contact transformations. J. Math. Anal. Appl. 2005, 308, 266. [Google Scholar] [CrossRef] [Green Version]
- Hickman, M.; Yazdan, S. Noether symmetries of Bianchi type II spacetimes. Gen. Relativ. Gravit. 2017, 49, 65. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Kara, A.H. Noether versus Killing symmetry of conformally flat Friedmann metric. Gen. Relativ. Gravit. 2007, 39, 2053. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Kara, A.H.; Kashif, A.R.; Zaman, F.D. Noether symmetries versus Killing vectors and isometries of spacetimes. Int. J. Theor. Phys. 2006, 45, 1029. [Google Scholar] [CrossRef]
- Camci, U.; Jamal, S.; Kara, A.H. Invariances and conservation laws based on some FRWuniverses. Int. J. Theor. Phys. 2014, 53, 1483. [Google Scholar] [CrossRef]
- Ali, F.; Feroze, T.; Ali, S. Complete classification of spherically symmetric static space-times via Noether symmetries. Theor. Math. Phys. 2015, 184, 973. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Hussain, I. A study of positive energy condition in Bianchi V spacetimes via Noether symmetries. Eur. Phys. J. C 2016, 76, 63. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Marmo, G.; Rubano, C.; Scudellaro, P. Noether symmetries in Bianchi universes. Int. J. Mod. Phys. D 1997, 6, 491. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Ritis, R.D.; Rubano, C.; Scudellaro, P. Noether symmetries in cosmology. Riv. Nuovo Cim. 1996, 19, 1. [Google Scholar] [CrossRef]
- Capozziello, S.; Piedipalumbo, E.; Rubano, C.; Scudellaro, P. Noether symmetry approach in phantom quintessence cosmology. Phys. Rev. D 2009, 80, 104030. [Google Scholar] [CrossRef] [Green Version]
- Hansraj, S.; Govender, M.; Mewalal, N. Expanding, shearing and accelerating isotropic plane symmetric universe with conformal Kasner geometry. Mod. Phys. Lett. A 2018, 33, 1850143. [Google Scholar] [CrossRef] [Green Version]
- Bedran, M.L.; Calvao, M.O.; Paiva, F.M.; Soares, I.D. Taub’s plane-symmetric vacuum spacetime reexamined. Phys. Rev. D 1997, 55, 3431. [Google Scholar] [CrossRef] [Green Version]
- Coley, A.A.; Tupper, B.O.J. Spherically symmetric anisotropic fluid ICKV spacetimes. Class. Quantum Gravit. 1994, 11, 2553. [Google Scholar] [CrossRef]
Metric No./ Branch No. | Metric Coefficients | Additional Symmetry | Conserved Quantity |
---|---|---|---|
5a | , | ||
2 | |||
where and | |||
5b | |||
2 | |||
where | |||
5c | , | ||
2 | where and | ||
5d | , | ||
2 | |||
and | |||
5e | , | ||
2 | where | ||
5f | , | ||
2 | |||
where and | |||
5g | , | ||
3 | |||
where and | |||
5h | , | ||
3 | |||
where | |||
5i | |||
5 | where | ||
5j | where | ||
7 | |||
5k | |||
7 | |||
5l | |||
8 | where | ||
5m | , | ||
8 | |||
where and | |||
5n | , | ||
8 | , where | ||
5o | , | ||
8 | where | ||
5p | , | ||
8 | |||
where , and | |||
5q | , | ||
9 | |||
where | |||
5r | , | ||
10 |
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
6a | |||
1 | where | , | |
6b | |||
1 | , | ||
6c | , | ||
7 | |||
where and | |||
6d | , | ||
7 | |||
where , | |||
6e | |||
7 | , | ||
where | |||
6f | |||
9 | , | ||
where | |||
6g | , | ||
10 | |||
where , | |||
6h | |||
10 | , | ||
6i | , | ||
11 | where and | , | |
6j | , | ||
12 | , | ||
6k | , | ||
13 | where and | , | |
6l | , | ||
14 | , | ||
6m | , | ||
15 | where and | , | |
6n | , | ||
19 | where and | , | |
6o | , | ||
20 | where and | , | |
6p | , | ||
21 | , | ||
6q | , | ||
22 | where and | , |
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
7a | , | ||
1 | where and | ||
, | |||
7b | , | ||
7 | , | ||
7c | , | ||
7 | where | ||
, | |||
7d | , | ||
7 | where | ||
, | |||
7e | |||
9 | where | ||
, | |||
7f | , | ||
10 | where | , | |
7g | , | ||
10 | where | ||
, | |||
7h | |||
18 | where | , | |
, | |||
7i | |||
24 | where | , | |
, |
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
8a | , | ||
1 | , | ||
where ; | |||
, | |||
8b | |||
1 | |||
where and , | , | ||
, | |||
, | |||
8c | , | ||
2 | |||
where | , | ||
and | , | ||
8d | |||
7 | |||
, | |||
where and | , | ||
8e | , | ||
7 | |||
where , , | , | ||
8f | , | ||
7 | |||
where , | , | ||
, | |||
8g | |||
9 | |||
where and , | , | ||
, | |||
8h | , | ||
10 | |||
where and , | , | ||
8i | |||
10 | |||
where , | , | ||
8j | , | ||
18 | where | ||
and | , | ||
, | |||
8k | , | ||
24 | |||
where and | , | ||
, |
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
9a | |||
1 | |||
where | |||
, | |||
9b | |||
1 | |||
where | |||
and | |||
, | |||
9c | |||
7 | |||
where | |||
and | , | ||
9d | |||
7 | |||
where | |||
, | |||
9e | |||
9 | |||
where | |||
and | |||
, | |||
9f | |||
10 | |||
where | |||
, | |||
9g | |||
10 | |||
where | |||
, | |||
9h | , | ||
24 | |||
where | , | ||
, | |||
where |
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
11a | |||
7 | |||
, | |||
, | |||
, | |||
11b | , | ||
10 | |||
where | , | ||
, | |||
, | |||
, | |||
Metric No./ Branch No. | Metric Coefficients | Additional Symmetries and Gauge Function | Conserved Quantities |
---|---|---|---|
17a | , | ||
1 | |||
where | |||
and | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17b | , | ||
2 | |||
where | |||
and | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17c | , | ||
16 | |||
where | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17d | , | ||
17 | , | ||
, | |||
where | , | ||
and | , | ||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17e | , | ||
18 | , | ||
, | |||
where | |||
and | , | ||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17f | , | ||
18 | , | ||
, | |||
where | , | ||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17g | , | ||
23 | , | ||
, | |||
where | , | ||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
, | |||
17h | , | ||
24 | |||
where | |||
, | |||
, | |||
, | |||
, | |||
, | |||
Metric No. | Physical Terms | Energy Conditions |
---|---|---|
6j, 6l, 6m | , |
|
| ||
6k | , |
|
| ||
6n–6q, 7i | , |
|
| ||
8c, 8d | , , | All energy conditions are satisfied if |
8k | , |
|
| ||
9f | , , |
|
| ||
9h |
| |
| ||
11a | , |
|
| ||
11b | , |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhan, M.; Hussain, T.; Azmi, F.; Mlaiki, N. Noether Symmetries and Conservation Laws in Non-Static Plane Symmetric Spacetime. Symmetry 2022, 14, 2174. https://doi.org/10.3390/sym14102174
Farhan M, Hussain T, Azmi F, Mlaiki N. Noether Symmetries and Conservation Laws in Non-Static Plane Symmetric Spacetime. Symmetry. 2022; 14(10):2174. https://doi.org/10.3390/sym14102174
Chicago/Turabian StyleFarhan, Muhammad, Tahir Hussain, Fatima Azmi, and Nabil Mlaiki. 2022. "Noether Symmetries and Conservation Laws in Non-Static Plane Symmetric Spacetime" Symmetry 14, no. 10: 2174. https://doi.org/10.3390/sym14102174
APA StyleFarhan, M., Hussain, T., Azmi, F., & Mlaiki, N. (2022). Noether Symmetries and Conservation Laws in Non-Static Plane Symmetric Spacetime. Symmetry, 14(10), 2174. https://doi.org/10.3390/sym14102174