Quadratic First Integrals of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy
Abstract
:1. Introduction
1.1. The Dynamical Equations Method
1.1.1. The Geodesic Approach
1.1.2. The Lie Symmetry Approach
1.1.3. The Direct Approach
1.2. The Mini-Superspace Lagrangian Method
2. QFIs of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy
2.1. The Autonomous LFIs/QFIs of Theorem 1
- a.
- The QFI
- b.
- The LFIThe LFI (27) is derived from the FI given in (21) for time-dependence if we assume that is a CKV with conformal factor . Indeed, we haveTherefore, the associated QFI becomes
3. Conformal Killing Tensors (CKTs) of Order Two
- a.
- If , is a second order KT or an improper CKT.
- b.
- If , is called a proper CKT.
- c.
- If is a KV, is called a homothetic KT (HKT) [32].
- d.
- If the trace , then and is called a trace-free CKT.
- e.
- If is a gradient (i.e., where is a scalar), then is called a CKT of gradient type.
- f.
- If f is an arbitrary function, then is a CKT with associated vector .
- g.
- If is a CKT of gradient type, then is a second order KT.
- (i)
- If f is an arbitrary function, then is a gradient CKT with associated vector .
- (ii)
- If and are CKVs with conformal factors, respectively, and , then the symmetrized tensor product is a CKT with associated vector .
- (iii)
- If and are CKTs with associated vectors, respectively, and , then the linear combination , where and are arbitrary constants, is a CKT with associated vector .
4. Example 1: Constrained Orbits of Potentials in That Admit FIs of the Form at Fixed Energy
4.1. Is the Homothetic Vector (HV)
4.2. Is a Special CKV (SCKV)
- (i)
- with conformal factor .
- (ii)
- with conformal factor .
5. The LFIs/QFIs of the Constrained Geodesic Equations
5.1. The QFIs for Null Constrained Geodesic Equations: Case
5.2. The QFIs of Non-Null (Spacelike or Timelike) Constrained Geodesic Equations: Case
6. Example 2: The Non-Null Constrained Geodesic Equations of the Metric
6.1. The Case of a Space of Constant Curvature: LFIs
Integration of the Constrained Geodesics (87)–(89)
- (a)
- Case .
- (b)
- Case .
6.2. The Case of a Metric That Does Not Possess KVs: QFIs
6.3. The Case of a Class of Integrable Lorentzian Toda Systems: QFIs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- For .
- (2)
- For .
References
- Contopoulos, G. A third integral of motion in a galaxy. Z. Astrophys. 1960, 49, 273. [Google Scholar]
- Lynden-Bell, D. Stellar Dynamics: Only isolating integrals should be used in Jeans’ Theorem. Mon. Not. R. Astron. Soc. 1962, 124, 1–9. [Google Scholar] [CrossRef]
- Contopoulos, G. On the Existence of a Third Integral of Motion. Astron. J. 1963, 68, 1. [Google Scholar] [CrossRef]
- Hénon, M.; Heiles, C. The Applicability of the Third Integral of Motion: Some Numerical Experiments. Astron. J. 1964, 69, 73. [Google Scholar] [CrossRef]
- Contopoulos, G. A Review of the “Third” Integral. Math. Eng. 2020, 2, 472. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Dynamical trajectories and geodesics. Ann. Math. 1928, 30, 591. [Google Scholar] [CrossRef]
- Benn, I.M. Geodesics and Killing tensors in mechanics. J. Math. Phys. 2006, 47, 022903. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Geodesic first integrals with explicit path-parameter dependence in Riemannian space-times. J. Math. Phys. 1981, 22, 1878. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M. Higher order first integrals of autonomous dynamical systems. J. Geom. Phys. 2021, 170, 104383. [Google Scholar] [CrossRef]
- Pin, O.C. Curvature and Mechanics. Adv. Math. 1975, 15, 269. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1978. [Google Scholar]
- Rosquist, K.; Pucacco, G. Invariants at fixed and arbitrary energy. A unified geometric approach. J. Phys. A Math. Gen. 1995, 28, 3235. [Google Scholar] [CrossRef] [Green Version]
- Karlovini, M.; Rosquist, K. A unified treatment of cubic invariants at fixed and arbitrary energy. J. Math. Phys. 2000, 41, 370. [Google Scholar] [CrossRef]
- Karlovini, M.; Pucacco, G.; Rosquist, K.; Samuelson, L. A unified treatment of quartic invariants at fixed and arbitrary energy. J. Math. Phys. 2002, 43, 4041. [Google Scholar] [CrossRef]
- Pucacco, G.; Rosquist, K. Configurational invariants of Hamiltonian systems. J. Math. Phys. 2005, 46, 052902. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Related First Integral Theorem: A Method for Obtaining Conservation Laws of Dynamical Systems with Geodesic Trajectories in Riemannian Spaces Admitting Symmetries. J. Math. Phys. 1968, 9, 8. [Google Scholar] [CrossRef]
- Katzin, G.H. Related integral theorem II. A method for obtaining quadratic constants of the motion for conservative dynamical systems admitting symmetries. J. Math. Phys. 1973, 14, 1213. [Google Scholar] [CrossRef]
- Levine, J.; Katzin, G.H. Symmetry mappings of constrained dynamical systems and an associated realted integral theorem. J. Math. Phys. 1973, 14, 1886. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Two-dimensional dynamical systems which admit Lie and Noether symmetries. J. Phys. A Math. Theor. 2011, 44, 175202. [Google Scholar] [CrossRef]
- Hodge, W.V.D.; Pedoe, D. Methods of Algebraic Geometry; Cambridge University Press: Cambridge, UK, 1994; Volume I. [Google Scholar]
- Dimakis, N.; Terzis, P.A.; Christodoulakis, T. Contact symmetries of constrained quadratic Lagrangians. J. Phys. Conf. Ser. 2016, 670, 012021. [Google Scholar] [CrossRef]
- Dimakis, N.; Terzis, P.A.; Christodoulakis, T. Integrability of geodesic motions in curved manifolds through nonlocal conserved charges. Phys. Rev. D 2019, 99, 104061. [Google Scholar] [CrossRef]
- Dimakis, N. Hidden symmetries from distortions of the conformal structure. Phys. Rev. D 2022, 106, 024043. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generalized Hamiltonian Dynamics. Can. J. Math. 1950, 2, 129. [Google Scholar] [CrossRef]
- Anderson, J.L.; Bergmann, P.G. Constraints in Covariant Field Theories. Phys. Rev. 1951, 83, 1018. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generalized Hamiltonian Dynamics. Proc. R. Soc. Lond. A 1958, 246, 326. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Lectrures on Quantum Mechanics; Yeshiva University Press: New York, NY, USA, 1964. [Google Scholar]
- Tsamparlis, M.; Mitsopoulos, A. Quadratic first integrals of autonomous conservative dynamical systems. J. Math. Phys. 2020, 61, 072703. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Mitsopoulos, A. First integrals of holonomic systems without Noether symmetries. J. Math. Phys. 2020, 61, 122701. [Google Scholar] [CrossRef]
- Terzis, P.A.; Dimakis, N.; Christodoulakis, T.; Paliathanasis, A.; Tsamparlis, M. Variational contact symmetries of constrained Lagrangians. J. Geom. Phys. 2016, 101, 52. [Google Scholar] [CrossRef]
- Rani, R.; Edgar, S.B.; Barnes, A. Killing tensors and conformal Killing tensors from conformal Killing vectors. Class. Quantum Gravity 2003, 20, 1929. [Google Scholar] [CrossRef]
- Prince, G. Homothetic Killing tensors. Phys. Lett. A 1983, 97, 133. [Google Scholar] [CrossRef]
- Walker, M.; Penrose, R. On Quadratic First Integrals of the Geodesic Equations for Type {22} Spacetimes. Commun. Math. Phys. 1970, 18, 265. [Google Scholar] [CrossRef]
- Weir, G.J. Conformal Killing tensors in reducible spaces. J. Math. Phys. 1977, 18, 1782. [Google Scholar] [CrossRef]
- Hietarinta, J. Direct methods for the search of the second invariant. Phys. Rep. 1987, 147, 87. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M.; Paliathanasis, A. Integrable and superintegrable potentials of 2d autonomous conservative dynamical systems. Symmetry 2020, 12, 1655. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kara, A.H.; Mahomed, F.H. Lie-Bäcklund and Noether Symmetries with Applications. Nonlinear Dyn. 1998, 15, 115. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M. Quadratic first integrals of time-dependent dynamical systems of the form . Mathematics 2021, 9, 1503. [Google Scholar] [CrossRef]
- Gavrilov, V.R.; Melnikov, V.N. Integration of D-dimensional cosmological models with two factor spaces by reduction to the generalized Emden-Fowler equation. Theor. Math. Phys. 1998, 114, 335. [Google Scholar] [CrossRef] [Green Version]
- Darboux, G. Sur un probléme de mècanique. Arch. Neerl. Sci. 1901, 6, 371. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsopoulos, A.; Tsamparlis, M. Quadratic First Integrals of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy. Symmetry 2022, 14, 1870. https://doi.org/10.3390/sym14091870
Mitsopoulos A, Tsamparlis M. Quadratic First Integrals of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy. Symmetry. 2022; 14(9):1870. https://doi.org/10.3390/sym14091870
Chicago/Turabian StyleMitsopoulos, Antonios, and Michael Tsamparlis. 2022. "Quadratic First Integrals of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy" Symmetry 14, no. 9: 1870. https://doi.org/10.3390/sym14091870
APA StyleMitsopoulos, A., & Tsamparlis, M. (2022). Quadratic First Integrals of Constrained Autonomous Conservative Dynamical Systems with Fixed Energy. Symmetry, 14(9), 1870. https://doi.org/10.3390/sym14091870