Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups
Abstract
:1. Introduction
2. Cayley Graphs of Permutation Groups with Transposition Generators
3. Cayley Graphs on Dihedral Groups
- 1.
- with .
- 2.
- The circulant graph G of order n with generating set satisfies the TCC.
- 3.
- In a total coloring of G with at most colors, each total independent set has at most k vertices, and any pair of vertices in an independent set satisfy .
- 4.
- .
4. Complement of Kneser Graphs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Code 1
Appendix A.2. Code 2
References
- Behzad, M. Graphs and Their Chromatic Numbers. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1965. [Google Scholar]
- Vizing, V.G. Some unsolved problems in graph theory. UspekhiMat. Nauk 1968, 23, 117–134. (In Russian); English translation in Russ. Math. Surv. 1968, 23, 125–141 [Google Scholar]
- McDiarmid, C.J.H.; Sanchez-Arroyo, A. Total coloring regular bipartite graphs is NP-hard. Discret. Math. 1994, 124, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Arroyo, A. Determining the total colouring number is NP-hard. Discret. Math. 1989, 78, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Yap, H.P. Total Colourings of Graphs; Lecture Notes in Mathematics, 1623; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Borodin, O.V. On the total colouring of planar graphs. J. Reine Angew. Math. 1989, 394, 180–185. [Google Scholar]
- Geetha, J.; Narayanan, N.; Somasundaram, K. Total Colorings-A Survey. Available online: https://arxiv.org/abs/1812.05833 (accessed on 6 September 2022).
- Basavaraju, M.; Chandran, L.S.; Francis, M.C.; Naskar, A. Weakening Total Coloring Conjecture: Weak TCC and Hadwiger’s Conjecture on Total Graphs. arXiv 2021, arXiv:2107.09994. [Google Scholar]
- Conrad, K.; (Department of Mathematics, University of Connecticut, Storrs, CT, USA). Generating Sets. Personal communication, 2013. [Google Scholar]
- Su, H.; Chen, S.-Y.; Kao, S.-S. Mutually independent Hamiltonian cycles in alternating group graphs. J. Supercomput. 2012, 61, 560–571. [Google Scholar] [CrossRef]
- Campos, C.N.; de Mello, C.P. A result on the total colouring of powers of cycles. Discret. Appl. Math. 2007, 155, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Zmazek, B.; Zerovnik, J. Behzad-Vizing conjecture and Cartesian-product graphs. Appl. Math. Lett. 2002, 15, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Geetha, J.; Somasundaram, K.; Fu, H.-L. Total colorings of circulant graphs. Discret. Math. Algorithms Appl. 2021, 13, 2150050. [Google Scholar] [CrossRef]
- Navaneeth, R.; Geetha, J.; Somasundaram, K.; Fu, H.-L. Total colorings of some classes of four regular circulant graphs. AKCE Int. J. Graphs Comb. 2022, 1–3. [Google Scholar] [CrossRef]
- Prajnanaswaroopa, S.; Geetha, J.; Somasundaram, K.; Narayanan, N.; Fu, H.-L. On total coloring of some classes of regular graphs. Taiwan J. Math. 2022, 1, 667–683. [Google Scholar] [CrossRef]
- Zorzi, A.; Figuiredo, C.M.H.; Machado, R.C.S.; Zatesko, L.M.; Souza, U.S. Compositions, decompositions, and conformability for total coloring on power of cycle graphs. Discret. Appl. Math. 2021, in press. [Google Scholar] [CrossRef]
- Stong, R.A. On 1-factorizability of Cayley graphs. J. Comb. Theory Ser. B 1985, 39, 298–307. [Google Scholar] [CrossRef]
- Baranyai, Z. The edge-coloring of complete hypergraphs I. J. Comb. Theory Ser. B 1979, 26, 276–294. [Google Scholar] [CrossRef]
- Monteil, T. Can You Find the Total Chromatic Number (Edge and Vertices) of a Graph? Available online: https://ask.sagemath.org/question/35744/can-you-find-the-total-chromatic-number-edge-and-vertices-of-a-graph/?answer=35745 (accessed on 6 September 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajnanaswaroopa, S.; Geetha, J.; Somasundaram, K.; Suksumran, T. Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups. Symmetry 2022, 14, 2173. https://doi.org/10.3390/sym14102173
Prajnanaswaroopa S, Geetha J, Somasundaram K, Suksumran T. Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups. Symmetry. 2022; 14(10):2173. https://doi.org/10.3390/sym14102173
Chicago/Turabian StylePrajnanaswaroopa, Shantharam, Jayabalan Geetha, Kanagasabapathi Somasundaram, and Teerapong Suksumran. 2022. "Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups" Symmetry 14, no. 10: 2173. https://doi.org/10.3390/sym14102173
APA StylePrajnanaswaroopa, S., Geetha, J., Somasundaram, K., & Suksumran, T. (2022). Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups. Symmetry, 14(10), 2173. https://doi.org/10.3390/sym14102173