Asymptotic Constancy for the Solutions of Caputo Fractional Differential Equations with Delay
Abstract
:1. Introduction
2. Main Results
2.1. Setup
- A1
- For a constant
- A2
- The function g is Lipschitz in its second argument, i.e.,
- A3
- There exists a continuous function , so that the inequality
- A4
- There exists a constant , so that for where
2.2. Asymptotic Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liouville, J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’éCole Polytech. 1832, 13, 1–69. [Google Scholar]
- Liouville, J. Mémoire sur le calcul des différentielles à indices quelconques. J. L’éCole Polytech. 1832, 13, 71–162. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation. (1847); Chapter XIX. In Bernard Riemann’s Gesammelte Mathematische Werke Und Wissenschaftlicher Nachlass; Dedekind, R., Weber, H.M., Eds.; Cambridge Library Collection-Mathematics; Cambridge University Press: Cambridge, UK, 2013; pp. 331–344. [Google Scholar] [CrossRef]
- Ross, B. The development of fractional calculus 1695–1900. Hist. Math. 1977, 4, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fu, X.; Morris, H. Construction of indicator system of regional economic system impact factors based on fractional differential equations. Chaos Solitons Fractals 2019, 128, 25–33. [Google Scholar] [CrossRef]
- Akgül, A.; Khoshnaw, S. Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 2020, 1, 52–58. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020, 2020, 299. [Google Scholar] [CrossRef] [PubMed]
- Yazgaç, B.G.; Kırcı, M. Fractional Differential Equation-Based Instantaneous Frequency Estimation for Signal Reconstruction. Fractal Fract. 2021, 5, 83. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Hristova, S.; O’Reagan, D. Practical stability of Caputo fractional differential equations by Lyapunov functions. Differ. Equ. Appl. 2016, 8, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Wu, G.C.; Zheng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solit. Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Choi, S.K.; Kang, B.; Koo, N. Stability for Caputo fractional differential systems. Abstr. Appl. Anal. 2014, 2014, 631419. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, W. Stability of nonlinear Caputo fractional differential equations. Appl. Math. Model. 2016, 40, 3919–3924. [Google Scholar] [CrossRef]
- Sene, N. Global asymptotic stability of the fractional differential equations. J. Nonlinear Sci. Appl. 2020, 13, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Burton, T. Fixed points and differential equations with asymptotically constant or periodic solutions. Electron. J. Qual. Theory Differ. Equ. 2004, 2004, 1–31. [Google Scholar] [CrossRef]
- Raffoul, Y. Discrete population models with asymptotically constant or periodic solutions. Int. J. Differ. Equ. 2011, 6, 143–152. [Google Scholar]
- Koyuncuoğlu, H.C.; Turhan, N.; Adivar, M. An asymptotic result for a certain type of delay dynamic equation with biological background. Math. Methods Appl. Sci. 2020, 43, 7303–7310. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Alnahdi, M. Existence theory for fractional-order neutral boundary value problems. Fract. Differ. Calc. 2018, 8, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I.; Bazighifan, O. Oscillation conditions for certain fourth-order non-linear neutral differential equation. Symmetry 2020, 12, 1096. [Google Scholar] [CrossRef]
- Niazi, A.U.K.; Wei, J.; Rehman, M.U.; Jun, D. Ulam-Hyers-Stability for nonlinear fractional neutral differential equations. Hacet. J. Math. Stat. 2019, 48, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, S.; Zhang, L. Neutral fractional integro-differential equation with nonlinear term depending on lower order derivative. J. Comput. Appl. Math. 2014, 260, 167–172. [Google Scholar] [CrossRef]
- Zhou, X.F.; Yang, F.; Jiang, W. Analytic study on linear neutral fractional differential equations. Appl. Math. Comput. 2015, 257, 295–307. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhou, Y.; He, Y. Existence of fractional neutral functional differential equations. Comput. Math. Appl. 2010, 59, 1095–1100. [Google Scholar] [CrossRef]
- Li, Z.; X, W. Existence of positive periodic solutions for neutral functional differential equations. Electron. J. Differ. Equ. 2006, 2006, 1–8. [Google Scholar] [CrossRef]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Kluwer Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B. V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, MA, USA, 2009. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koyuncuoğlu, H.C.; Raffoul, Y.; Turhan, N. Asymptotic Constancy for the Solutions of Caputo Fractional Differential Equations with Delay. Symmetry 2023, 15, 88. https://doi.org/10.3390/sym15010088
Koyuncuoğlu HC, Raffoul Y, Turhan N. Asymptotic Constancy for the Solutions of Caputo Fractional Differential Equations with Delay. Symmetry. 2023; 15(1):88. https://doi.org/10.3390/sym15010088
Chicago/Turabian StyleKoyuncuoğlu, Halis Can, Youssef Raffoul, and Nezihe Turhan. 2023. "Asymptotic Constancy for the Solutions of Caputo Fractional Differential Equations with Delay" Symmetry 15, no. 1: 88. https://doi.org/10.3390/sym15010088
APA StyleKoyuncuoğlu, H. C., Raffoul, Y., & Turhan, N. (2023). Asymptotic Constancy for the Solutions of Caputo Fractional Differential Equations with Delay. Symmetry, 15(1), 88. https://doi.org/10.3390/sym15010088