Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- .
3. Global and Local Existence in
4. Global Existence in
- (a)
- The function
- (b)
- The function
- (c)
- (i)
- The continuous and bounded function is
- (ii)
- Additionally, the function is continuous and bounded ; moreover,
5. Local Existence in
- (i)
- A continuous mapping in is defined as with
- (ii)
- A continuous mapping in is defined as with limiting value of function
- (iii)
- u holds (4) for
- ()
- A continuous mapping is defined as
- ()
- A continuous mapping with limiting value of function is defined as , with
6. Existence Locally in
7. Regularity
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.; Kiryakova, V.; Mainardi, F. A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 2010, 13, 329–334. [Google Scholar]
- El-Shahed, M.; Salem, A. On the generalized Navier-Stokes equations. Appl. Math. Comput. 2004, 156, 287–293. [Google Scholar] [CrossRef]
- Doering, C.R.; Gibbon, J.D. Applied Analysis of the Navier-Stokes Equations (No. 12); Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Gresho, P.M.; Sani, R.L. On pressure boundary conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 1987, 7, 1111–1145. [Google Scholar] [CrossRef]
- Lemarié-Rieusset, P.G. Recent Developments in the Navier-Stokes Problem; CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Von Wahl, W. The Equations of Navier-Stokes and Abstract Parabolic Equations; Vieweg+Teubner Verlag Wiesbaden: Braunschweig, Germany, 1985. [Google Scholar]
- Iwabuchi, T.; Takada, R. Global solutions for the Navier-Stokes equations in the rotational framework. Math. Ann. 2013, 357, 727–741. [Google Scholar] [CrossRef]
- Davidson, P.A. An Introduction to magnetohydrodynamics. Am. J. Phys. 2002, 70, 781. [Google Scholar] [CrossRef] [Green Version]
- Goedbloed, J.H.; Goedbloed, J.P.; Poedts, S. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Desjardins, B.; Le Bris, C. Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equ. 1998, 11, 377–394. [Google Scholar] [CrossRef]
- Qayyum, M.; Abbas, T.; Afzal, S.; Saeed, S.T.; Akgül, A.; Inc, M.; Mahmoud, K.H.; Alsubaie, A.S. Heat Transfer Analysis of Unsteady MHD Carreau Fluid Flow over a Stretching/Shrinking Sheet. Coatings 2022, 12, 1661. [Google Scholar] [CrossRef]
- Rehman, A.U.; Riaz, M.B.; Saeed, S.T.; Jarad, F.; Jasim, H.N.; Enver, A. An exact and comparative analysis of MHD free convection flow of water-based nanoparticles via CF derivative. Math. Probl. Eng. 2022, 2022, 9977188. [Google Scholar] [CrossRef]
- Saeed, S.T.; Riaz, M.B.; Awrejcewicz, J.; Ahmad, H. Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions. Energies 2021, 14, 6243. [Google Scholar] [CrossRef]
- Niazi, A.U.K.; He, J.; Shafqat, R.; Ahmed, B. Existence, Uniqueness, and E q–Ulam-Type Stability of Fuzzy Fractional Differential Equation. Fractal Fract. 2021, 5, 66. [Google Scholar] [CrossRef]
- Shafqat, R.; Niazi, A.U.K.; Jeelani, M.B.; Alharthi, N.H. Existence and Uniqueness of Mild Solution Where α∈(1,2) for Fuzzy Fractional Evolution Equations with Uncertainty. Fractal Fract. 2022, 6, 65. [Google Scholar] [CrossRef]
- Alnahdi, A.S.; Shafqat, R.; Niazi, A.U.K.; Jeelani, M.B. Pattern formation induced by fuzzy fractional-order model of COVID-19. Axioms 2022, 11, 313. [Google Scholar] [CrossRef]
- Khan, A.; Shafqat, R.; Niazi, A.U.K. Existence Results of Fuzzy Delay Impulsive Fractional Differential Equation by Fixed Point Theory Approach. J. Funct. Spaces 2022, 2022, 4123949. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R.; Niazi, A.U.K.; Awadalla, M. Local and global existence and uniqueness of solution for time-fractional fuzzy Navier-Stokes equations. Fractal Fract. 2022, 6, 330. [Google Scholar] [CrossRef]
- Abbas, A.; Shafqat, R.; Jeelani, M.B.; Alharthi, N.H. Significance of Chemical Reaction and Lorentz Force on Third-Grade Fluid Flow and Heat Transfer with Darcy–Forchheimer Law over an Inclined Exponentially Stretching Sheet Embedded in a Porous Medium. Symmetry 2022, 14, 779. [Google Scholar] [CrossRef]
- Phong, T.T.; Long, L.D. Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator. J. Math. Comput. Sci. 2022, 26, 357–367. [Google Scholar] [CrossRef]
- Shafqat, R.; Niazi, A.U.K.; Yavuz, M.; Jeelani, M.B.; Saleem, K. Mild Solution for the Time-Fractional Navier-Stokes Equation Incorporating MHD Effects. Fractal Fract. 2022, 6, 580. [Google Scholar] [CrossRef]
- Mehmood, Y.; Shafqat, R.; Sarris, I.E.; Bilal, M.; Sajid, T.; Akhtar, T. Numerical Investigation of MWCNT and SWCNT Fluid Flow along with the Activation Energy Effects over Quartic Auto Catalytic Endothermic and Exothermic Chemical Reactions. Mathematics 2022, 10, 4636. [Google Scholar] [CrossRef]
- Boulares, H.; Benchaabane, A.; Pakkaranang, N.; Shafqat, R.; Panyanak, B. Qualitative Properties of Positive Solutions of a Kind for Fractional Pantograph Problems using Technique Fixed Point Theory. Fractal Fract. 2022, 6, 593. [Google Scholar] [CrossRef]
- Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control. Theory 2015, 4, 507–524. [Google Scholar] [CrossRef]
- Wang, R.N.; Chen, D.H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 2012, 252, 202–235. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuasbeh, K.; Shafqat, R.; Niazi, A.U.K.; Awadalla, M. Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects. Symmetry 2023, 15, 280. https://doi.org/10.3390/sym15020280
Abuasbeh K, Shafqat R, Niazi AUK, Awadalla M. Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects. Symmetry. 2023; 15(2):280. https://doi.org/10.3390/sym15020280
Chicago/Turabian StyleAbuasbeh, Kinda, Ramsha Shafqat, Azmat Ullah Khan Niazi, and Muath Awadalla. 2023. "Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects" Symmetry 15, no. 2: 280. https://doi.org/10.3390/sym15020280
APA StyleAbuasbeh, K., Shafqat, R., Niazi, A. U. K., & Awadalla, M. (2023). Mild Solutions for the Time-Fractional Navier-Stokes Equations with MHD Effects. Symmetry, 15(2), 280. https://doi.org/10.3390/sym15020280