Bipolar Fuzzy Multi-Criteria Decision-Making Technique Based on Probability Aggregation Operators for Selection of Optimal Artificial Intelligence Framework
Abstract
:1. Introduction
1.1. Literature Review
1.2. Motivation
2. Preliminaries
- If then
- If then
- If then we have
- If then
- If then
- If then
3. Main Results (Probabilistic AOs for BFNs)
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- 2.
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- 3.
- Boundedness: under the incidence of a class of BFNs , and , if and , then
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- Boundedness: under the incidence of a class of BFNs , and , if and , then
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- Boundedness: under the incidence of a class of BFNs , and , if and , then
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- Boundedness: under the incidence of a class of BFNs , and , if and , then
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- Boundedness: under the incidence of a class of BFNs , and , if and , then
- Idempotency: under the incidence of a class of BFNs , and , if for all , then
- Monotonicity: under the incidence of a class of BFNs and , and , if , , then
- Boundedness: under the incidence of a class of BFNs , and , if and , then
4. MCDM Technique under BFNs
4.1. Case Study
5. Comparative Analysis
- ❖
- The theory of immediate probability AOs diagnosed by Wei and Merigo [49] within intuitionistic fuzzy information.
- ❖
- The theory of Dombi AOs and related techniques of multi-attribute decision-making (MADM) was diagnosed by Jana et al. [44] within bipolar fuzzy information.
- ❖
- The theory of Hamacher AOs and related MADM techniques was interpreted by Wei et al. [45] under the structure of BFS.
- ❖
- The notion of sine trigonometric AOs invented by Riaz et al. [46] within bipolar fuzzy information.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zhang, W.R. Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis. In NAFIPS/IFIS/NASA’94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, San Antonio, TX, USA, 18–21 December 1994; IEEE: Miami, FL, USA, 1994; pp. 305–309. [Google Scholar]
- Wang, R.; Luo, J.; Huang, S. Developing an artificial intelligence framework for online destination image photos identification. J. Destin. Mark. Manag. 2020, 18, 100512. [Google Scholar] [CrossRef]
- Jiang, X.; Coffee, M.; Bari, A.; Wang, J.; Jiang, X.; Huang, J.; Shi, J.; Dai, J.; Cai, J.; Zhang, T.; et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput. Mater. Contin. 2020, 63, 537–551. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, Y.; Pan, Y. Multiple knowledge representation for big data artificial intelligence: Framework, applications, and case studies. Front. Inf. Technol. Electron. Eng. 2021, 22, 1551–1558. [Google Scholar] [CrossRef]
- Bennett, C.C.; Hauser, K. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artif. Intell. Med. 2013, 57, 9–19. [Google Scholar] [CrossRef]
- John, M.M.; Olsson, H.H.; Bosch, J. Towards an AI-driven business development framework: A multi-case study. J. Softw. Evol. Process 2023, 35, e2432. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.K.; Pathak, R.K.; Jain, V.; Rashidi, P.; Suri, J.S. Human activity recognition in artificial intelligence framework: A narrative review. Artif. Intell. Rev. 2022, 55, 4755–4808. [Google Scholar] [CrossRef]
- Khan, S.; Paul, D.; Momtahan, P.; Aloqaily, M. Artificial intelligence framework for smart city microgrids: State of the art, challenges, and opportunities. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; IEEE: Miami, FL, USA; pp. 283–288. [Google Scholar]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technol. Forecast. Soc. Change 2021, 162, 120392. [Google Scholar] [CrossRef]
- Das, S.; Nayak, G.; Saba, L.; Kalra, M.; Suri, J.S.; Saxena, S. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Comput. Biol. Med. 2022, 143, 105273. [Google Scholar] [CrossRef]
- Wehenkel, L.; Van Cutsem, T.; Ribbens-Pavella, M. An artificial intelligence framework for online transient stability assessment of power systems. IEEE Trans. Power Syst. 1989, 4, 789–800. [Google Scholar] [CrossRef]
- Soenksen, L.R.; Ma, Y.; Zeng, C.; Boussioux, L.; Carballo, K.V.; Na, L.; Wiberg, H.M.; Li, M.L.; Fuentes, I.; Bertsimas, D. Integrated multimodal artificial intelligence framework for healthcare applications. NPJ Digit. Med. 2022, 5, 149. [Google Scholar] [CrossRef]
- Ghillani, D. Deep learning and artificial intelligence framework to improve the cyber security. Authorea Prepr. 2022. [Google Scholar] [CrossRef]
- Raja, R.A.; Yuvaraj, N.; Kousik, N.V. Analyses on artificial intelligence framework to detect crime pattern. Intell. Data Anal. Terror. Threat. Predict. Archit. Methodol. Tech. Appl. 2021, 119–132. [Google Scholar] [CrossRef]
- Parekh, V.; Shah, D.; Shah, M. Fatigue detection using artificial intelligence framework. Augment. Hum. Res. 2020, 5, 1–17. [Google Scholar] [CrossRef]
- Cateni, S.; Vannucci, M.; Vannocci, M.; Colla, V. Variable selection and feature extraction through artificial intelligence techniques. Multivar. Anal. Manag. Eng. Sci. 2012, 6, 103–118. [Google Scholar]
- Zhao, X.; Fan, Y.; Qiu, Q.; Chen, K. Multi-criteria mission abort policy for systems subject to two-stage degradation process. Eur. J. Oper. Res. 2021, 295, 233–245. [Google Scholar] [CrossRef]
- Aruldoss, M.; Lakshmi, T.M.; Venkatesan, V.P. A survey on multi criteria decision making methods and its applications. Am. J. Inf. Syst. 2013, 1, 31–43. [Google Scholar]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision-making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Abdullah, L. Fuzzy multi criteria decision making and its applications: A brief review of category. Procedia-Soc. Behav. Sci. 2013, 97, 131–136. [Google Scholar] [CrossRef]
- Kaya, I.; Çolak, M.; Terzi, F. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strat. Rev. 2019, 24, 207–228. [Google Scholar] [CrossRef]
- Yalcin, N.; Bayrakdaroglu, A.; Kahraman, C. Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. Expert Syst. Appl. 2012, 39, 350–364. [Google Scholar] [CrossRef]
- Maiers, J.; Sherif, Y.S. Applications of fuzzy set theory. IEEE Trans. Syst. Man Cybern. 1985, 1, 175–189. [Google Scholar] [CrossRef]
- Roberts, D.W. Ordination on the basis of fuzzy set theory. Vegetatio 1986, 66, 123–131. [Google Scholar] [CrossRef]
- Deschrijver, G.; Kerre, E.E. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 2003, 133, 227–235. [Google Scholar] [CrossRef]
- Yager, R.R.; Filev, D. On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets Syst. 1993, 55, 255–271. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. A review of fuzzy set aggregation connectives. Inf. Sci. 1985, 36, 85–121. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy set and possibility theory-based methods in artificial intelligence. Artif. Intell. 2003, 148, 1–9. [Google Scholar] [CrossRef]
- Garibaldi, J.M. The need for fuzzy AI. IEEE/CAA J. Autom. Sin. 2019, 6, 610–622. [Google Scholar] [CrossRef]
- Pedrycz, W. Fuzzy set framework for development of a perception perspective. Fuzzy Sets Syst. 1990, 37, 123–137. [Google Scholar] [CrossRef]
- Kandel, A.; Schneider, M. Fuzzy sets and their applications to artificial intelligence. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 1989; Volume 28, pp. 69–105. [Google Scholar]
- Yager, R.R. Fuzzy logics and artificial intelligence. Fuzzy Sets Syst. 1997, 90, 193–198. [Google Scholar] [CrossRef]
- Negoita, C.V.; Ralescu, D.A. Fuzzy systems and artificial intelligence. Kybernetes 1974, 3, 173–178. [Google Scholar] [CrossRef]
- Akram, M.; Shumaiza; Arshad, M. Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. Comput. Appl. Math. 2020, 39, 7. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Alshehri, N.O.; Akram, M. Multi-criteria decision-making methods in bipolar fuzzy environment. Int. J. Fuzzy Syst. 2018, 20, 2057–2064. [Google Scholar] [CrossRef]
- Jana, C. Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach. Comput. Appl. Math. 2021, 40, 227. [Google Scholar] [CrossRef]
- Liu, R.; Hou, L.X.; Liu, H.C.; Lin, W. Occupational health and safety risk assessment using an integrated SWARA-MABAC model under bipolar fuzzy environment. Comput. Appl. Math. 2020, 39, 1–17. [Google Scholar] [CrossRef]
- Stanujkic, D.; Karabasevic, D.; Zavadskas, E.K.; Smarandache, F.; Brauers, W.K. A bipolar fuzzy extension of the MULTIMOORA method. Informatica 2019, 30, 135–152. [Google Scholar] [CrossRef]
- Shumaiza; Akram, M.; Al-Kenani, A.N. Multiple-attribute decision making ELECTRE II method under bipolar fuzzy model. Algorithms 2019, 12, 226. [Google Scholar] [CrossRef]
- Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564. [Google Scholar] [CrossRef]
- Akram, M. Bipolar fuzzy graphs with applications. Knowl. Based Syst. 2013, 39, 1–8. [Google Scholar] [CrossRef]
- Jana, C.; Pal, M.; Wang, J.Q. Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-making process. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3533–3549. [Google Scholar] [CrossRef]
- Wei, G.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making. Int. J. Fuzzy Syst. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Riaz, M.; Pamucar, D.; Habib, A.; Jamil, N. Innovative bipolar fuzzy sine trigonometric aggregation operators and SIR method for medical tourism supply chain. Math. Probl. Eng. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Jana, C.; Garg, H.; Pal, M.; Sarkar, B.; Wei, G. MABAC framework for logarithmic bipolar fuzzy multiple attribute group decision-making for supplier selection. Complex Intell. Syst. 2023, 1–16. [Google Scholar] [CrossRef]
- Garg, H.; Mahmood, T.; Rehman, U.U.; Nguyen, G.N. Multi-attribute decision-making approach based on Aczel-Alsina power aggregation operators under bipolar fuzzy information & its application to quantum computing. Alex. Eng. J. 2023, 82, 248–259. [Google Scholar]
- Wei, G.W.; Merigó, J.M. Methods for strategic decision-making problems with immediate probabilities in intuitionistic fuzzy setting. Sci. Iran. 2012, 19, 1936–1946. [Google Scholar] [CrossRef]
- Mahmood, T.; Ur Rehman, U.; Ali, Z.; Mahmood, T. Hybrid vector similarity measures based on complex hesitant fuzzy sets and their applications to pattern recognition and medical diagnosis. J. Intell. Fuzzy Syst. 2021, 40, 625–646. [Google Scholar] [CrossRef]
- Mahmood, T.; Ur Rehman, U. A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures. Int. J. Intell. Syst. 2022, 37, 535–567. [Google Scholar] [CrossRef]
- Mahmood, T.; Rehman, U.U.; Jaleel, A.; Ahmmad, J.; Chinram, R. Bipolar complex fuzzy soft sets and their applications in decision-making. Mathematics 2022, 10, 1048. [Google Scholar] [CrossRef]
- Jaleel, A. WASPAS Technique Utilized for Agricultural Robotics System based on Dombi Aggregation Operators under Bipolar Complex Fuzzy Soft Information. J. Innov. Res. Math. Comput. Sci. 2022, 1, 67–95. [Google Scholar]
- Ali, Z. Decision-Making Techniques Based on Complex Intuitionistic Fuzzy Power Interaction Aggregation Operators and Their Applications. J. Innov. Res. Math. Comput. Sci. 2022, 1, 107–125. [Google Scholar]
- Ozer, O. Hamacher Prioritized Aggregation Operators Based on Complex Picture Fuzzy Sets and Their Applications in Decision-Making Problems. J. Innov. Res. Math. Comput. Sci. 2022, 1, 33–54. [Google Scholar]
- Simon, H.A. A behavioral model of rational choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Koczkodaj, W.; Mansournia, M.; Pedrycz, W.; Wolny-Dominiak, A.; Zabrodskii, P.; Strzałka, D.; Armstrong, T.; Zolfaghari, A.; Dębski, M.; Mazurek, J. 1,000,000 cases of COVID-19 outside of China: The date predicted by a simple heuristic. Glob. Epidemiol. 2020, 2, 100023. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, P.; Wenseleers, T. Uncertainty about social interactions leads to the evolution of social heuristics. Nat. Commun. 2018, 9, 2151. [Google Scholar] [CrossRef]
- Taheri, E.; Wang, C.; Doost, E.Z. Emergency decision-making under an uncertain time limit. Int. J. Disaster Risk Reduct. 2023, 95, 103832. [Google Scholar] [CrossRef]
Operators | ||||
---|---|---|---|---|
P-BFWA | ||||
P-BFOWA | ||||
IP-BFOWA | ||||
P-BFWG | ||||
P-BFOWG | ||||
IP-BFOWG |
Operators | ||||
---|---|---|---|---|
P-BFWA | ||||
P-BFOWA | ||||
IP-BFOWA | ||||
P-BFWG | ||||
P-BFOWG | ||||
IP-BFOWG |
Reference | ||||
---|---|---|---|---|
Wei and Merigo [49] | Failed | Failed | Failed | Failed |
Jana et al. [44] (BFDWA) | ||||
Jana et al. [44] (BFDWG) | ||||
Wei et al. [45] (BFHWA) | ||||
Wei et al. [45] (BFHWG) | ||||
Riaz et al. [46] | ||||
Diagnosed operator (P-BFWA) | ||||
Diagnosed operator (P-BFOWA) | ||||
Diagnosed operator (IP-BFOWA) | ||||
Diagnosed operator (P-BFWG) | ||||
Diagnosed operator (P-BFOWG) | ||||
Diagnosed operator (IP-BFOWG) |
Operators | Ranking |
---|---|
Wei and Merigo [49] | Failed |
Jana et al. [44] (BFDWA) | |
Jana et al. [44] (BFDWG) | |
Wei et al. [45] (BFHWA) | |
Wei et al. [45] (BFHWG) | |
Riaz et al. [46] | |
Diagnosed operator (P-BFWA) | |
Diagnosed operator (P-BFOWA) | |
Diagnosed operator (IP-BFOWA) | |
Diagnosed operator (P-BFWG) | |
Diagnosed operator (P-BFOWG) | |
Diagnosed operator (IP-BFOWG) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Rehman, U.u.; Mahmood, T. Bipolar Fuzzy Multi-Criteria Decision-Making Technique Based on Probability Aggregation Operators for Selection of Optimal Artificial Intelligence Framework. Symmetry 2023, 15, 2045. https://doi.org/10.3390/sym15112045
Chen Y, Rehman Uu, Mahmood T. Bipolar Fuzzy Multi-Criteria Decision-Making Technique Based on Probability Aggregation Operators for Selection of Optimal Artificial Intelligence Framework. Symmetry. 2023; 15(11):2045. https://doi.org/10.3390/sym15112045
Chicago/Turabian StyleChen, Yanhua, Ubaid ur Rehman, and Tahir Mahmood. 2023. "Bipolar Fuzzy Multi-Criteria Decision-Making Technique Based on Probability Aggregation Operators for Selection of Optimal Artificial Intelligence Framework" Symmetry 15, no. 11: 2045. https://doi.org/10.3390/sym15112045
APA StyleChen, Y., Rehman, U. u., & Mahmood, T. (2023). Bipolar Fuzzy Multi-Criteria Decision-Making Technique Based on Probability Aggregation Operators for Selection of Optimal Artificial Intelligence Framework. Symmetry, 15(11), 2045. https://doi.org/10.3390/sym15112045