The Separability Problem in Two Qubits Revisited
Abstract
:1. Introduction
2. Prelude
3. Operational Separability Criteria
3.1. Bell-CHSH Inequalities
3.2. Schmidt Decomposition Criterion
3.3. Entropy of Entanglement Criterion
3.4. The Positive Partial Transpose (PPT) Criterion
3.5. Negativity Criterion
3.6. The Reduction Criterion
3.7. Concurrence Criterion
3.8. The Majoration Criterion
3.9. The Computable Cross Norm or Realignment (CCNR) Criterion
- 1.
- The computable cross norm (CCN) criterion is an analytical and computable separability criterion for bipartite quantum states developed by O. Rudolph [54], known to systematically detect bound entanglement and complements in certain aspects of the well-known Peres positive partial transpose (PPT) criterion. It can be formulated in different equivalent ways. A very useful and instructive way is the following procedure [57]. Consider a quantum state defined on a tensor product Hilbert space . We denote the canonical real basis and expand in terms of the operators , we writeNext, we define an operator that acts on byThe CCN criterion asserts that if ρ is separable, then the trace norm of is less than or equal to one. Whenever a quantum state ρ satisfies , this signals that ρ is entangled.Let’s consider the following two qubit example. We consider two Hilbert spaces and span by , respectively. Next we consider the family of states onDefining now , we haveNext, we define an operator that acts on byWe have egality if and only if , so is separable if and only if .The CCN criterion is in general not a sufficient criterion for separability in dimension . For two qubit states with maximally disordered subsystems the CCN criterion is necessary and sufficient. It is shown that for all pure states, for Bell diagonal states, for Werner states in dimension , and for isotropic states in arbitrary dimensions, the CCN criterion is necessary and sufficient.
- 2.
- A matrix realignment criterionMotivated by the Kronecker product approximation technique, a method to assess the inseparability of bipartite quantum systems, based on a realigned matrix constructed from the density matrix has been developed by Chen and Wu [56]. Let’s define the realigned matrix as follows.We consider a bipartite system A, B represented by two Hilbert space and of dimension and respectively. Let’s consider now a density matrix acting on , the realigned matrix is such that the matrix elements areConsider a bipartite state acting on asThe realignment criterion based on the matrix states that if the state is separable, then must hold [20].
3.10. The Correlation Matrix (Or De Vicente) Criterion (2008)
3.11. Enhanced Entanglement Criterion via SIC POVMs
4. Non Operational Separability Criteria
4.1. Positive Maps Criterion
4.2. The Entanglement Witnesses
- for all separable σ;
- there exists some entangled ρ such that .
4.3. Local Uncertainty Relations (LURs) Criterion
4.4. The Li-Qiao Criterion
4.5. Simultaneous Hollowisability Matrix Criterion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruss, D.; Cirac, J.I.; Horodecki, P.; Hulpke, F.; Kraus, B.; Lewenstein, M.; Sanpera, A. Reflections upon separability and distillability. J. Mod. Opt. 2001, 49, 8. [Google Scholar]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Schrödinger, E. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Wheeler, J.A.; Zurek, W.H. (Eds.) Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Bouwmeester, D.; Ekert, A.; Zeilinger, A. (Eds.) The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bruss, D.; Lütkenhaus, N. Quantum key distribution: From principles to practicalities. Appl. Algebra Eng. Commun. Comput. 2000, 10, 383. [Google Scholar]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K. Purification of noisy entanglement and faithful teledeportation via noisy channels. Phys. Rev. Lett. 1996, 76, 722. [Google Scholar] [CrossRef] [PubMed]
- St⌀rmer, E. Positive linear maps of operator algebras. Acta Math. 1963, 110, 233. [Google Scholar]
- Jamio lkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275. [Google Scholar] [CrossRef]
- Choi, M.D. Positive semidefinite biquadratic forms. Linear Algebra Appl. 1975, 12, 95. [Google Scholar] [CrossRef]
- Woronowicz, S.L. Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 1976, 10, 165. [Google Scholar] [CrossRef]
- Horodecki, P.; Rudnicki, L.; Zyczkowski, K. Five open problems in quantum information theory. PRX Quantum 2022, 3, 010101. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1951. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Yu, C.S.; Song, H.S. Global entanglement for multipartite quantum states. Phys. Rev. A 2006, 73, 022325. [Google Scholar] [CrossRef]
- Neven, A.; Bastin, T. The quantum separability problem is a simultaneous hollowisation matrix analysis problem. J. Phys. A Math. Theor. 2018, 51, 315305. [Google Scholar] [CrossRef]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessity and sufficient condition. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef]
- Heisenberg, W. The Principles of the Quantum Theory; S. Hirzel Verlag: Stuttgart, Germany; University of Chicago Press: Chicago, IL, USA; Dover Publications: Mineola, NY, USA, 1930. [Google Scholar]
- Heisenberg’s 1958 Collection of Essays, Physics and Philosophy. Available online: https://riskservices.com/physics-and-philosophy-by-heisenberg-1958/ (accessed on 18 August 2023).
- Einstein Attacks Quantum Theory. New York Times, 4 May 1935.
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 1981, 47, 460. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 1982, 49, 91. [Google Scholar] [CrossRef]
- Hardy, L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 1992, 68, 2981. [Google Scholar] [CrossRef] [PubMed]
- Hardy, L. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 1993, 71, 1665. [Google Scholar] [CrossRef] [PubMed]
- Arraut, I. The solution to the Hardy’s paradox. arXiv 2021, arXiv:2106.06397. [Google Scholar]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [PubMed]
- Giustina, M.; Versteegh, M.A.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.Å.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef]
- Gisin, N. Bell’s inequality holds for all non-product states. Phys. Lett. A 1991, 154, 201. [Google Scholar] [CrossRef]
- Cirelson, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93. [Google Scholar] [CrossRef]
- Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model. Phys. Rev. A 1989, 40, 4277. [Google Scholar] [CrossRef]
- Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopic distinct states. Phys. Rev. Lett. 1990, 65, 1838. [Google Scholar] [CrossRef]
- Gisin, N.; Bechmann-Pasquinucci, H. Bell inequality, Bell states and maximally entangled states for N qubits. Phys. Lett. A 1998, 246, 1. [Google Scholar] [CrossRef]
- Zukowski, M.; Brukner, Č. Bell’s theorem for general N qubit states. Phys. Rev. Lett. 2002, 88, 210401. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 1907, 63, 433. [Google Scholar] [CrossRef]
- Ekert, A.; Knight, P.L. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 1995, 63, 415. [Google Scholar] [CrossRef]
- Peres, A. Higher order Schmidt decomposition. Phys. Lett. A 1995, 202, 16. [Google Scholar] [CrossRef]
- Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [Google Scholar] [CrossRef]
- Horodecki, P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 1997, 232, 333–339. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef]
- Cerf, N.; Adami, C.; Gingrich, R.M. Reduction criterion for separability. Phys. Rev. 1999, 60, 898. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022–5025. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of concurrence. Quantum Inf. Comput. 2001, 1, 27–44. [Google Scholar] [CrossRef]
- Fei, S.M.; Zhao, M.J.; Chen, K.; Wang, Z.X. Experimental determination of entanglement with a single measurement. Phys. Rev. A 2009, 80, 032320. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Nielsen, M.A.; Kempe, J. Separable states are more disordered globally than locally. Phys. Rev. Lett. 2001, 86, 5184. [Google Scholar] [CrossRef]
- Rudolph, O. Computable cross-norm criterion for separability. Lett. Math. Phys. 2004, 70, 57–64. [Google Scholar] [CrossRef]
- Rudolph, O. Further results on the cross norm criterion for separability. Quantum Inf. Process. 2005, 4, 219–239. [Google Scholar] [CrossRef]
- Chen, K.; Wu, L.A. A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 2003, 3, 193–202. [Google Scholar] [CrossRef]
- Rudolph, O. Some properties of the Computable Cross Norm Criterion for Separability. Phys. Rev. A. 2003, 67, 032312. [Google Scholar] [CrossRef]
- Bloch, F. Nuclear induction. Phys. Rev. 1946, 70, 460. [Google Scholar] [CrossRef]
- Hioe, F.T.; Eterly, J.H. N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 1981, 47, 838. [Google Scholar] [CrossRef]
- de Vicente, J. Separability criteria based on the Block representation of density matrices. Quant. Inf. Comput. 2007, 7, 624. [Google Scholar]
- Fano, U. Pairs of two-level systems. Rev. Mod. Phys. 1983, 55, 855. [Google Scholar] [CrossRef]
- Shang, J.; Asadian, A.; Zhu, H.; Gühne, O. Enhanced entanglement criterion via symmetric informationnally complete measurement. Phys. Rev. A 2018, 98, 022309. [Google Scholar] [CrossRef]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Choi, M.D. Positive linear maps. Proc. Sympos. Pure Math. 1982, 38, 583. [Google Scholar]
- St⌀rmer, E. Decomposable positive maps on C∗-algebras. Proc. Amer. Math. Soc. 1982, 86, 402. [Google Scholar]
- Terhal, B. A family of indecomposable positive linear maps based on entangled states. Lin. Algebr. Appl. 2000, 323, 61. [Google Scholar] [CrossRef]
- Lewenstein, M.; Kraus, B.; Cirac, J.I.; Horodecki, P. Optimization of entanglement witnesses. Phys. Rev. A 2000, 62, 052310. [Google Scholar] [CrossRef]
- Gühne, O.; Toth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–6. [Google Scholar] [CrossRef]
- Ganguly, N.; Adhikari, S.; Majumdar, A. Common entanglement witnesses and their characteristics. Quant. Inf. Pro. 2013, 12, 425–436. [Google Scholar] [CrossRef]
- Hyllus, P.; Gühne, O.; Bruss, D.; Lewenstein, M. Relations between entanglement witnesses and Bell inequalities. Phys. Rev. A 2005, 72, 012321. [Google Scholar] [CrossRef]
- Krammer, P. Characterizing entanglement with geometric entanglement witnesses. J. Phys. A Math. Theor. 2009, 42, 065305. [Google Scholar] [CrossRef]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef]
- Gühne, O.; Lewenstein, M. Entropic uncertainty relations and entanglement. Phys. Rev. A 2004, 70, 022316. [Google Scholar] [CrossRef]
- Gühne, O. Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 2004, 92, 117903. [Google Scholar] [CrossRef] [PubMed]
- Gühne, O. Entanglement criteria based pn local uncertainty relations are strictly stronger than the computable cross norm criteria. Phys. Rev. A 2006, 74, 010301. [Google Scholar] [CrossRef]
- Li, J.-L.; Qiao, C.-F. A necessary and sufficient criterion for the separability of quantum state. Sci. Rep. 2018, 8, 1442. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bercovici, H.; Collins, B.; Dykema, K.; Li, W.S. Characterization of singular numbers of products of operators in matrix algebras and finite von Neumann algebras. Bull. Sci. Math. 2015, 139, 400–419. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer: New York, NY, USA, 1997. [Google Scholar]
- Dai Pra, P.; Pavon, M.; Sahasrabudhe, N. A note on the geometric interpretation of Bell’s inequalities. Lett. Math. Phys. 2013, 103, 1165–1170. [Google Scholar] [CrossRef]
- Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplifications. Phys. Rev. A 1989, 40, 913. [Google Scholar] [CrossRef]
- Duan, L.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 2000, 84, 2722. [Google Scholar] [CrossRef]
- Tripathi, V.; Radhakrishnan, C.; Byrnes, T. Covariance matrix entanglement criterion for an arbitrary set of operators. New J. Phys. 2020, 22, 073055. [Google Scholar] [CrossRef]
- Balachandran, A.; Govindarajan, T.; De Queiroz, A.R.; Reyes-Lega, A. Algebraic theory of entanglement. II Nuovo C. 2013, 36, 27–33. [Google Scholar]
- Osterloh, A.; Amico, L.; Falci, G.; Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 2002, 416, 608–610. [Google Scholar] [CrossRef]
- Zhang, J.; Vala, J.; Sastry, S.; Whaley, K.B. Geometric theory of nonlocal two-qubit operations. Phys. Rev. 2003, A 67, 042313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnonfin, H.; Gouba, L. The Separability Problem in Two Qubits Revisited. Symmetry 2023, 15, 2089. https://doi.org/10.3390/sym15112089
Gnonfin H, Gouba L. The Separability Problem in Two Qubits Revisited. Symmetry. 2023; 15(11):2089. https://doi.org/10.3390/sym15112089
Chicago/Turabian StyleGnonfin, Honorine, and Laure Gouba. 2023. "The Separability Problem in Two Qubits Revisited" Symmetry 15, no. 11: 2089. https://doi.org/10.3390/sym15112089
APA StyleGnonfin, H., & Gouba, L. (2023). The Separability Problem in Two Qubits Revisited. Symmetry, 15(11), 2089. https://doi.org/10.3390/sym15112089