Generalized Equations in Quantum Mechanics and Brownian Theory
Abstract
:1. Introduction
2. Derivation of a Generalized Schrödinger Equation from the Theory of Scale Relativity
2.1. Basics Results in the Theory of Scale Relativity
2.2. Generalized Schrödinger Equation
3. Generalized Gross–Pitaevskii Equation for Bose–Einstein Condensates
3.1. Generalized Gross–Pitaevskii Equation
3.2. Madelung Transformation
3.3. Generalized Quantum Smoluchowski Equation
3.4. Quantum Force
3.5. Time-Independent GP Equation
3.6. Hydrostatic Equilibrium
4. Generalized Thermodynamics
4.1. Free Energy
4.2. H-Theorem
4.3. Equilibrium State
4.4. Functional Derivatives in Terms of the Hydrodynamic Variables
4.5. Functional Derivatives in Terms of the Wave Function
5. Statistical Equilibrium State of a System of Classical Brownian Particles
5.1. Gibbs Canonical Equilibrium
5.2. Yvon–Born–Green (YBG) Hierarchy
5.3. Long-Range Interactions: Mean Field Approximation
5.4. Short-Range Interactions: Density Functional Theory
5.5. Excess Free Energy Functional for a Barotropic Gas
5.6. Free Energy in Phase Space
6. Kinetic Theory of Brownian Particles in Interaction
6.1. N-Body Langevin Equations
6.2. N-Body Kramers Equation
6.3. BBGKY-like Hierarchy and Kramers Equation
6.4. Damped Jeans Equations
6.5. Strong Friction Limit: Smoluchowski Equation
6.6. Local Thermodynamic Equilibrium Approximation: Damped Euler Equation
6.7. Cattaneo Equation
7. Dynamic Density Functional Theory
7.1. Long- and Short-Range Interactions
7.2. Kramers Equation
7.3. Damped Jeans Equations
7.4. Smoluchowski Equation
7.5. Damped Euler Equation
7.6. Cattaneo Equation
7.7. Stochastic Kinetic Equations
8. Back to the Generalized Schrödinger Equation
8.1. Self-Interaction Pressure
8.2. Generalized Landau Free Energy Functional
8.3. Quantum Potential
8.4. K-Generalized Schrödinger Equation
8.5. Another Generalization
8.6. Vlasov–Bohm–Kramers Equation
9. General Case
10. Conclusions
- (i)
- In this paper, we assumed that the evolution of the N-body distribution of the Brownian system is governed by the ordinary Kramers equation (see Equation (181)). At equilibrium, we obtain the ordinary Gibbs distribution (see Equation (118)). This implies that the velocity distribution is Maxwellian. In this sense, we are fundamentally using ordinary thermodynamics for the N-body system. However, when we consider the one-body distribution in configuration space , we have to take into account the correlation between the particles due to short-range interactions. As a result, the free energy in configuration space differs from the ideal Boltzmann free energy . In the DFT and DDFT, the correlations are taken into account through an excess free energy in configuration space, which can be interpreted as a generalized free energy. In certain cases, this excess free energy can be related to the Tsallis free energy (see Equation (A71)) but this is not universally true. In the strong friction limit, the evolution of the density is governed by a generalized Smoluchowski equation (see Equation (214)), including a nonlinear barotropic pressure , which is due to the spatial correlations encapsulated in the excess free energy . This equation can be viewed as a generalized Fokker–Planck equation in configuration space. In the absence of correlations, we recover the ordinary Smoluchowski Equation (219) with an isothermal (linear) equation of state associated with the Boltzmann free energy .
- (ii)
- If we come back to the foundations of generalized thermodynamics [154,155], we should modify the Kramers equation and the Gibbs distribution function for the N-body system. Developing the corresponding formalism represents, however, a formidable task. Another, more tractable, possibility is to modify the Kramers equation for the one-body distribution function [131,132]. This leads to the notion of generalized Fokker–Planck equations in phase space associated with a generalized free energy (see Section 4 of [131] and Section 6.2 of [37]). In that case, the equilibrium velocity distribution is not Maxwellian. In the strong friction limit, the generalized Kramers equation leads to a generalized Smoluchowski equation including a nonlinear barotropic pressure determined by the generalized free energy . This equation can be derived rigorously from a Chapman–Enskog expansion [156]. The equation of state is different from the isothermal (linear) equation of state even in the absence of correlations in configuration space. If there are correlations in configuration space, the pressure is due both to these correlations (as in (i)) and to the non-Boltzmannian nature of the distribution function.
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Thermodynamical Identities for a Cold Gas
Appendix A.1. First Principle of Thermodynamics and Gibbs–Duhem Relation
Appendix A.2. Barotropic Equation of State
Appendix A.3. Internal Energy Functional
Appendix A.4. Polytropic Equation of State
Appendix A.5. Self-Interaction Potential
Appendix A.6. Standard BEC
Appendix B. Variation of the Energies Functionals
Appendix C. H-Theorems
Appendix C.1. Smoluchowski Equation
Appendix C.2. Damped Euler Equations
Appendix C.3. Kramers Equation
Appendix C.4. Generalized GP Equation
Appendix D. Thermodynamical Identities for Brownian Particles in Contact with a Heat Bath
Appendix D.1. First Principle of Thermodynamics and Gibbs–Duhem Relation
Appendix D.2. Barotropic Equation of State
Appendix D.3. Free Energy Functional
Appendix D.4. Polytropic Equation of State
Appendix D.5. Connection with Cold Gases like BECs (T = 0)
Appendix E. K-Functional
Appendix E.1. K-Potential
Appendix E.2. K-Pressure Tensor
- (i)
- The classical case corresponds to (no “quantum” correlation), implying
- (ii)
- The ordinary Landau functional corresponds to , implying
- (iii)
- The standard quantum case corresponds to , implyingWe recover the expression (70) of the quantum pressure tensor up to a term of the form satisfying .
- (iv)
- For the function associated with the Tsallis entropy [16], we obtain
Appendix F. Expansion of the Mean Field Potential for Weak Inhomogeneity
Appendix F.1. Pseudo-Potential
Appendix F.2. Square Gradient Functional
Appendix F.3. Van der Waals Equation of State
Appendix F.4. Weakly Inhomogeneous Systems
Appendix G. Generalized Dispersion Relations
Appendix G.1. Generalized Schrödinger Equation
Appendix G.2. Generalized Vlasov–Bohm Equation
1 | In his first paper [2], Einstein was not sure that his theory applied to Brownian motion. But in his second paper [3], he mentioned that Siedentopf informed him that he and other physicists, notably Gouy [4], had been convinced by direct observations that Brownian motion was caused by the irregular thermal movements of the molecules of the liquid. The order of magnitude of the paths described by the particles (in particular the dependence of the intensity of motion on the particle size and on the temperature) were in agreement with Einstein’s theory. |
2 | Fick [5,6] introduced the diffusion equation phenomenologically in 1855 by analogy with Fourier’s law of heat conduction and Ohm’s law of charge transport. He considered the diffusion of salts in water and did not mention the connection with Brownian motion. The probabilistic derivation proposed by Einstein [2], which relies on the Taylor expansion of a Master equation, is essentially the same as the one used later by Fokker [7,8,9], Planck [10], Klein [11], Kramers [12], Chandrasekhar [13] and Moyal [14] to derive the Fokker-Planck equation through the Kramers-Moyal expansion. Actually, this method of expansion was first introduced by Lord Rayleigh [15] as early as 1891 long before all the classic works on Brownian theory. He considered the kinetic theory of massive particles bombarded by numerous small projectiles. Although Lord Rayleigh did not explicitly refer to Brownian motion, his paper can be seen as a precursor of the theory of Brownian motion that is usually considered to start with the seminal work of Einstein [2,3]. There is, however, an important difference. Lord Rayleigh [15] considered the velocity distribution of homogeneously distributed particles while Einstein [2] considered the spatial density of Brownian particles in the strong friction limit (or, equivalently, for large times ). See Refs. [16,17,18,19] for additional comments about the paper of Lord Rayleigh in connection to the history of Brownian motion. |
3 | |
4 | |
5 | This moment approach [32] can be seen as a formalization of the Sutherland-Einstein hydrodynamic approach [2,20]. For a finite value of the friction coefficient , the LTE condition is not rigorously justified. Therefore, the damped Euler equation is at most approximate. One can show [32] that the LTE approximation becomes exact in the limit . As a result, the Smoluchowski equation is rigorously justified in the strong friction limit. |
6 | The Bohr model was extended in special relativity by Sommerfeld [58,59] who could explain the fine structure of the hydrogen spectrum. In unpublished notes, Schrödinger first derived a relativistic wave equation (now known as the Klein-Gordon equation) but did not recover the fine structure of the hydrogen spectrum because this equation does not account for the spin of the electron (this problem was solved later by the Dirac [60,61] equation). This is why he restricted himself to the nonrelativistic limit in his first communications [52,53,54] (he published the Klein-Gordon equation in his fourth communication [55] with the largest reserve). See the introduction of Ref. [62] for a short account of the early history of wave mechanics (Schrödinger, Klein-Gordon and Dirac equations) and an exhaustive list of references. |
7 | In the relativistic regime they have the form of nonlinear Klein-Gordon equations (see the introduction of Ref. [73] for a review). |
8 | There is a vast literature on these equations in the case (see the reviews [81,82,83,84,85,86,87,88,89]). For bosons without self-interaction, we get the Schrödinger-Poisson equations [90]. This leads to the fuzzy dark matter (FDM) model [91] which is also called the scalar field dark matter (SFDM) model [92] or the Bose-Einstein condensate dark matter (BECDM) model [93,94]. For self-interacting bosons, we get the Gross-Pitaevskii-Poisson (GPP) equations [95,96,97]. These equations have been solved numerically in Refs. [93,94,98,99,100,101,102,103,104,105]. |
9 | |
10 | This relation was noted by many authors [112,113,114,115,116,117] in the early years of quantum mechanics due to the formal analogy between the Schrödinger equation and the diffusion equation with an imaginary diffusion coefficient (or an imaginary time). This relation also appeared in the work of Nelson [111] who first proposed a derivation of the Schrödinger equation from Newtonian mechanics by using an entirely classical stochastic approach. |
11 | The justification of Equation (35) given in Ref. [77] based on an extension of the theory of violent relaxation [122,123] to a self-gravitating boson gas (leading to a form of Wigner-Kramers equation) is physically different from the justification given in Refs. [74,78] and in Section 2 based on an extension of the theory of scale relativity [75] to the case of dissipative quantum systems. It is not clear at that point if the two approaches are related to each other. |
12 | The quantum potential Q is directly related to the imaginary part of the complex velocity in the theory of scale relativity by Equation (E.12) of [74]. The imaginary part of the velocity can also be interpreted as an “osmotic” velocity in the sense of Nelson [111] (see the discussion in Appendix E.4 of [74]). |
13 | Actually, the Madelung hydrodynamic equations are not fully equivalent to the Schrödinger equation [127]. To achieve equivalence, we must assume that the velocity is equal to a gradient. Furthermore, we must add by hand a quantization condition , where n is an integer, as in the old quantum theory. This ensures that the wave function is single valued. |
14 | The free energy can be written in the usual form where is the total energy and is the Boltzmann entropy in configuration space. We recall, however, that T is an effective temperature. |
15 | If we define the out-of-equilibrium chemical potential by
|
16 | This expression results from Equation (119) by assuming that there are no correlations in velocity space. This is valid for . |
17 | This relation ensures that the Gibbs canonical distribution (118) of statistical equilibrium is the stationary solution of the N-body Kramers Equation (181). Note that the Einstein relation (180) differs from the original Einstein relation (1) since we are considering inertial Brownian particles instead of overdamped Brownian particles. |
18 | One could also start from the Dean equation in phase space which governs the evolution of the exact DF [143]. This is the equivalent of the Klimontovich equation for Hamiltonian systems. |
19 | These equations were first derived by Maxwell in his theory of gases [146]. |
20 | The LTE approximation is rigorously justified only for . It may provide a good approximation when is sufficiently large or when the system is sufficiently close to equilibrium (i.e. ). |
21 | This closure problem is distinct from the closure of the hierarchy of damped Jeans equations considered previously. |
22 | |
23 | This equivalence is rather obvious since we can consider that the self-interaction between the bosons corresponds to the correlations that arise from short-range interactions. |
24 | |
25 | When , we recover the equations of Section 8.5. |
26 | This is related to the fact that the bosons are all condensed in the same quantum state. |
27 | We can relate the temperature and the friction in the generalized GP equation to the temperature and the friction of a gas of Brownian particles. We also questioned whether it is possible to interpret the self-interaction and the quantum potential in the GP equation in terms of fluid correlations described by an appropriate excess free energy. Although there is an interesting correspondance between generalized quantum equations and Brownian equations, it is not clear if this correspondance is just a formal analogy or it if has a more profound interpretation. |
28 | If we take the hydrodynamic moments of the Wigner equation, we find that the quantum pressure [see Equation (69)] can be written in the form , where is the Wigner distribution function [77]. The quantum pressure can therefore be related to the correlations of the velocity fluctuations of “particles” like in an ordinary fluid. On the other hand, in the Vlasov-Bohm equation, the quantum potential is introduced in an ad hoc manner in the advection term. In the interpretation that we have suggested here, it can be related to the excess free energy of a fluid, hence to the spatial correlation function of its constitutive particles. |
29 | We recall that the temperature T in Equation (35) is an effective temperature which is different from the true thermodynamical temperature considered here. |
30 | This is not always the case. For example, the free energy associated with the Smoluchowski-Poisson equations describing self-gravitating Brownian particles is not bounded from below [158]. In that case, the system can experience an isothermal collapse. However, at sufficiently high temperatures, there exist long-lived metastable states (local minima of free energy at fixed mass) on which the system can settle [159]. |
31 | The system evolves at fixed temperature but because of the presence of correlations among the particles. |
32 | In the work of Cahn and Hilliard [166], the general free energy functional is expanded in a Taylor series about leading to a free energy of the form equivalent to Equation (A96). See also the Remark at the end of Section 8.2. |
References
- Brown, R. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 1828, 4, 161. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 17, 549. [Google Scholar] [CrossRef]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906, 19, 371. [Google Scholar] [CrossRef]
- Gouy, M. Note sur le mouvement Brownien. J. Phys. 1888, 7, 561. [Google Scholar] [CrossRef]
- Fick, A. Ueber Diffusion. Ann. Phys. 1855, 170, 59. [Google Scholar] [CrossRef]
- Fick, A.V. On liquid diffusion. Phil. Mag. 1855, 10, 30. [Google Scholar] [CrossRef]
- Fokker, A.D. Over Brown’sche Bewegingen in het Stralingsveld en Waarschijnlijkheidsbeschouwingen in de Stralingstheorie. Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1913. [Google Scholar]
- Fokker, A.D. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 1914, 43, 810. [Google Scholar] [CrossRef]
- Fokker, A.D. Sur les mouvements Browniens dans le champ du rayonnement noir. Arch. Néerlandaises Sci. Exactes 1918, 4, 379. [Google Scholar]
- Planck, M. Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzber. Preuss. Akad. Wiss. 1917, 1, 324. [Google Scholar]
- Klein, O. Zur statistischen Theorie der Suspensionen und Lösungen. Ark. Mat. Och Fys. 1921, 16, 1. [Google Scholar]
- Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 1940, 7, 284. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1. [Google Scholar] [CrossRef]
- Moyal, J.E. Stochastic Processes and Statistical Physics. J. R. Stat. Soc. (Lond.) B 1949, 11, 150. [Google Scholar] [CrossRef]
- Rayleigh, L. Dynamical Problems in Illustration of the Theory of Gases. Phil. Mag. 1891, 32, 424. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Euler, Smoluchowski and Schrödinger equations admitting self-similar solutions with a Tsallis invariant profile. Eur. Phys. J. Plus 2019, 134, 353. [Google Scholar] [CrossRef]
- Chavanis, P.H. The Generalized Stochastic Smoluchowski Equation. Entropy 2019, 21, 1006. [Google Scholar] [CrossRef]
- Chavanis, P.H. Landau equation for self-gravitating classical and quantum particles: Application to dark matter. Eur. Phys. J. Plus 2021, 136, 703. [Google Scholar] [CrossRef]
- Chavanis, P.H. The Secular Dressed Diffusion Equation. Universe 2023, 9, 68. [Google Scholar] [CrossRef]
- Sutherland, W. A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin. Phil. Mag. 1905, 9, 781. [Google Scholar] [CrossRef]
- von Smoluchowski, M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 1906, 326, 756. [Google Scholar] [CrossRef]
- Rayleigh, L. On the Resultant of a large Number of Vibrations of the same Pitch and of arbitrary Phase. Phil. Mag. 1880, 10, 73. [Google Scholar] [CrossRef]
- Rayleigh, L. On James Bernouilli’s Theorem in Probabilities. Phil. Mag. 1899, 47, 246. [Google Scholar] [CrossRef]
- Pearson, K. The Problem of the Random Walk. Nature 1905, 72, 294. [Google Scholar] [CrossRef]
- Rayleigh, L. The Problem of the Random Walk. Nature 1905, 72, 318. [Google Scholar] [CrossRef]
- Pearson, K. The Problem of the Random Walk. Nature 1905, 72, 342. [Google Scholar] [CrossRef]
- Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus 1908, 146, 530. [Google Scholar]
- Perrin, J. Mouvement brownien et réalité moléculaire. Ann. Chim. Phys. 1909, 18, 1. [Google Scholar]
- Perrin, J. Les Atomes; Librairie Félix Alcan: Paris, France, 1913. [Google Scholar]
- von Smoluchowski, M. Über Brownsche Molekularbewegung unter Einwirkung äusserer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Ann. Phys. 1915, 48, 1103. [Google Scholar] [CrossRef]
- Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823. [Google Scholar] [CrossRef]
- Chavanis, P.H. Hydrodynamics of Brownian particles. Physica A 2010, 389, 375. [Google Scholar] [CrossRef]
- Hansen, J.P.; MacDonald, I.R. Theory of Simple Liquids; Academic Press: London, UK, 1986. [Google Scholar]
- Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 1979, 28, 143. [Google Scholar] [CrossRef]
- Marconi, U.M.B.; Tarazona, P. Dynamic density functional theory of fluids. J. Chem. Phys. 1999, 110, 8032. [Google Scholar] [CrossRef]
- Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Chavanis, P.H. Brownian particles with long- and short-range interactions. Physica A 2011, 390, 1546. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Stochastic Fokker-Planck Equations. Entropy 2015, 17, 3205. [Google Scholar] [CrossRef]
- Nernst, W. Zur Kinetik der in Lösung befindlichen Körper. I. Theorie der Diffusion. Z. Physik. Chem. 1888, 2, 613. [Google Scholar] [CrossRef]
- Nernst, W. Die elektromotorische Wirksamkeit der Jonen. Z. Physik. Chem. 1889, 4, 129. [Google Scholar] [CrossRef]
- Planck, M. Ueber die Erregung von Electricität und Wärme in Electrolyten. Ann. Phys. 1890, 39, 161. [Google Scholar] [CrossRef]
- Planck, M. Ueber die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte. Ann. Phys. 1890, 40, 561. [Google Scholar] [CrossRef]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte. II. Phys. Z. 1923, 24, 305. [Google Scholar]
- Keller, E.; Segel, L.A. Initiation of Slime Mold Aggregation Viewed as an Instability. J. Theor. Biol. 1970, 26, 399. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Rosier, C.; Sire, C. Thermodynamics of self-gravitating systems. Phys. Rev. E 2002, 66, 036105. [Google Scholar] [CrossRef]
- Dominguez, A.; Oettel, M.; Dietrich, S. Dynamics of colloidal particles with capillary interactions. Phys. Rev. E 2010, 82, 011402. [Google Scholar] [CrossRef] [PubMed]
- Zapperi, S.; Moreira, A.A.; Andrade, J.S. Flux Front Penetration in Disordered Superconductors. Phys. Rev. Lett. 2001, 86, 3622. [Google Scholar] [CrossRef] [PubMed]
- Lutsko, J.F. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 2012, 136, 034509. [Google Scholar] [CrossRef] [PubMed]
- Chavanis, P.H. Two-dimensional Brownian vortices. Physica A 2008, 387, 6917. [Google Scholar] [CrossRef]
- Chavanis, P.H. The Brownian mean field model. Eur. Phys. J. B 2014, 87, 120. [Google Scholar] [CrossRef]
- de Broglie, L. Recherches sur la théorie des Quanta. Ann. Phys. 1925, 3, 22. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 384, 361. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 384, 489. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 385, 437. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 386, 109. [Google Scholar] [CrossRef]
- Bohr, N. On the Constitution of Atoms and Molecules. Phil. Mag. 1913, 26, 1. [Google Scholar] [CrossRef]
- Bohr, N. On the Constitution of Atoms and Molecules. Part II. Systems containing only a Single Nucleus. Phil. Mag. 1913, 26, 476. [Google Scholar] [CrossRef]
- Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Ann. Phys. 1916, 51, 1. [Google Scholar] [CrossRef]
- Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Ann. Phys. 1916, 51, 125. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. A 1928, 117, 610. [Google Scholar]
- Dirac, P.A.M. The Quantum Theory of the Electron. Part II. Proc. R. Soc. A 1928, 118, 351. [Google Scholar]
- Chavanis, P.H.; Matos, T. Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: The hydrodynamic approach. Eur. Phys. J. Plus 2017, 132, 30. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Phys. 1927, 40, 322. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
- Rajaraman, R. Solitons and Instantons; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Chiao, R.Y.; Garmire, E.; Townes, C.H. Self-Trapping of Optical Beams. Phys. Rev. Lett. 1964, 13, 479. [Google Scholar] [CrossRef]
- Bogoliubov, N. On the Theory of Superfluidity. J. Phys. 1947, 11, 23. [Google Scholar]
- Gross, E.P. Classical theory of boson wave fields. Ann. Phys. 1958, 4, 57. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a Quantized Vortex in Boson Systems. Nuovo Cimento 1961, 20, 454. [Google Scholar] [CrossRef]
- Gross, E.P. Hydrodynamics of a Superfluid Condensate. J. Math. Phys. 1963, 4, 195. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex Lines in an imperfect Bose gas. Sov. Phys. JETP 1961, 13, 451. [Google Scholar]
- Chavanis, P.H. Maximum mass of relativistic self-gravitating Bose-Einstein condensates with repulsive or attractive |φ|4 self-interaction. Phys. Rev. D 2023, 107, 103503. [Google Scholar] [CrossRef]
- Chavanis, P.H. Derivation of a generalized Schrödinger equation from the theory of scale relativity. Eur. Phys. J. Plus 2017, 132, 286. [Google Scholar] [CrossRef]
- Nottale, L. Scale Relativity and Fractal Space-Time; Imperial College Press: London, UK, 2011. [Google Scholar]
- Chavanis, P.H. Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. Eur. Phys. J. Plus 2017, 132, 248. [Google Scholar] [CrossRef]
- Chavanis, P.H. A heuristic wave equation parameterizing BEC dark matter halos with a quantum core and an isothermal atmosphere. Eur. Phys. J. B 2022, 95, 48. [Google Scholar] [CrossRef]
- Chavanis, P.H. Derivation of a generalized Schrödinger equation for dark matter halos from the theory of scale relativity. Phys. Dark Univ. 2018, 22, 80. [Google Scholar] [CrossRef]
- Chavanis, P.H. Predictive model of BEC dark matter halos with a solitonic core and an isothermal atmosphere. Phys. Rev. D 2019, 100, 083022. [Google Scholar] [CrossRef]
- Chavanis, P.H. Predictive model of fermionic dark matter halos with a quantum core and an isothermal atmosphere. Phys. Rev. D 2022, 106, 043538. [Google Scholar] [CrossRef]
- Suárez, A.; Robles, V.H.; Matos, T. A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. Astrophys. Space Sci. Proc. 2014, 38, 107. [Google Scholar]
- Rindler-Daller, T.; Shapiro, P.R. Finding New Signature Effects on Galactic Dynamics to Constrain Bose-Einstein-Condensed Cold Dark Matter. Astrophys. Space Sci. Proc. 2014, 38, 163. [Google Scholar]
- Chavanis, P.H. Self-gravitating Bose-Einstein condensates. In Quantum Aspects of Black Holes; Calmet, X., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Marsh, D. Axion cosmology. Phys. Rep. 2016, 643, 1. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Lee, J.W. Brief History of Ultra-light Scalar Dark Matter Models. EPJ Web Conf. 2018, 168, 06005. [Google Scholar] [CrossRef]
- Niemeyer, J.C. Small-scale structure of fuzzy and axion-like dark matter. Prog. Part. Nucl. Phys. 2020, 113, 103787. [Google Scholar] [CrossRef]
- Ferreira, E. Ultra-light dark matter. Astron. Astrophys. Rev. 2021, 29, 7. [Google Scholar] [CrossRef]
- Hui, L. Wave Dark Matter. Ann. Rev. Astron. Astrophys. 2021, 59, 247. [Google Scholar] [CrossRef]
- Ruffini, R.; Bonazzola, S. Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State. Phys. Rev. 1969, 187, 1767. [Google Scholar] [CrossRef]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158. [Google Scholar] [CrossRef] [PubMed]
- Alcubierre, M.; Guzmán, F.S.; Matos, T.; Núñez, D.N.; Ureña-López, L.A.U.; Wiederhold, P. Galactic collapse of scalar field dark matter. Class. Quantum Grav. 2002, 19, 5017. [Google Scholar] [CrossRef]
- Mocz, P.; Vogelsberger, M.; Robles, V.H.; Zavala, J.; Boylan-Kolchin, M.; Fialkov, A.; Hernquist, L. Galaxy formation with BECDM—I. Turbulence and relaxation of idealized haloes. Mon. Not. R. Astron. Soc. 2017, 471, 4559. [Google Scholar] [CrossRef]
- Mocz, P.; Fialkov, A.; Vogelsberger, M.; Becerra, F.; Shen, X.; Robles, V.H.; Amin, M.A.; Zavala, J.; Boylan-Kolchin, M.; Bose, S.; et al. Galaxy formation with BECDM - II. Cosmic filaments and first galaxies. Mon. Not. R. Astron. Soc. 2020, 494, 2027. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Harko, T. Can dark matter be a Bose Einstein condensate? J. Cosmol. Astropart. Phys. 2007, 06, 025. [Google Scholar] [CrossRef]
- Chavanis, P.H. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D 2011, 84, 043531. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Delfini, L. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. II. Numerical results. Phys. Rev. D 2011, 84, 043532. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496. [Google Scholar] [CrossRef]
- Schive, H.Y.; Liao, M.H.; Woo, T.P.; Wong, S.K.; Chiueh, T.; Broadhurst, T.; Hwang, W.Y.P. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett. 2014, 113, 261302. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, B.; Niemeyer, J.C.; Engels, J.F. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies. Phys. Rev. D 2016, 94, 043513. [Google Scholar] [CrossRef]
- Mocz, P.; Lancaster, L.; Fialkov, A.; Becerra, F.; Chavanis, P.H. Schrödinger-Poisson-Vlasov-Poisson correspondence. Phys. Rev. D 2018, 97, 083519. [Google Scholar] [CrossRef]
- Veltmaat, J.; Niemeyer, J.C.; Schwabe, B. Formation and structure of ultralight bosonic dark matter halos. Phys. Rev. D 2018, 98, 043509. [Google Scholar] [CrossRef]
- Mocz, P.; Fialkov, A.; Vogelsberger, M.; Becerra, F.; Amin, M.A.; Bose, S.; Boylan-Kolchin, M.; Chavanis, P.H.; Hernquist, L.; Lancaster, L.; et al. First Star-Forming Structures in Fuzzy Cosmic Filaments. Phys. Rev. Lett. 2019, 123, 141301. [Google Scholar] [CrossRef] [PubMed]
- Veltmaat, J.; Schwabe, B.; Niemeyer, J.C. Baryon-driven growth of solitonic cores in fuzzy dark matter halos. Phys. Rev. D 2020, 101, 083518. [Google Scholar] [CrossRef]
- Mocz, P.; Fialkov, A.; Vogelsberger, M.; Boylan-Kolchin, M.; Chavanis, P.H.; Amin, M.A.; Bose, S.; Dome, T.; Hernquist, L.; Lancaster, L.; et al. Cosmological structure formation and soliton phase transition in fuzzy dark matter with axion self-interactions. Mon. Not. R. Astron. Soc. 2023, 521, 2608. [Google Scholar] [CrossRef]
- Chavanis, P.H. The quantum HMF model: I. Fermions. J. Stat. Mech. 2011, 08, 08002. [Google Scholar] [CrossRef]
- Chavanis, P.H. The quantum HMF model: II. Bosons. J. Stat. Mech. 2011, 08, 08003. [Google Scholar] [CrossRef]
- Manfredi, G.; Haas, F. Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 2001, 64, 075316. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; MacGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Abbott, L.F.; Wise, M.B. Dimension of a quantum-mechanical path. Am. J. Phys. 1981, 49, 37. [Google Scholar] [CrossRef]
- Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079. [Google Scholar] [CrossRef]
- Schrödinger, E. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. Henri Poincaré 1932, 4, 269. [Google Scholar]
- Fürth, R. Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik. Z. Phys. 1933, 81, 143. [Google Scholar] [CrossRef]
- Fényes, I. Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Phys. 1952, 132, 81. [Google Scholar] [CrossRef]
- Weizel, W. Ableitung der Quantentheorie aus einem klassischen, kausal determinierten Modell. Z. Phys. 1953, 134, 264. [Google Scholar] [CrossRef]
- Kershaw, D. Theory of Hidden Variables. Phys. Rev. 1964, 136, 1850. [Google Scholar] [CrossRef]
- Comisar, G.G. Brownian-Motion Model of Nonrelativistic Quantum Mechanics. Phys. Rev. 1965, 138, 1332. [Google Scholar] [CrossRef]
- Kostin, M.D. On the Schrödinger-Langevin Equation. J. Chem. Phys. 1972, 57, 3589. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Nonlinear wave mechanics. Ann. Phys. 1976, 100, 62. [Google Scholar] [CrossRef]
- Seidel, E.; Suen, W.M. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett. 1994, 72, 2516. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, F.S.; Ureña-López, L.A. Gravitational Cooling of Self-gravitating Bose Condensates. Astrophys. J. 2006, 645, 814. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 1967, 136, 101. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Sommeria, J.; Robert, R. Statistical Mechanics of Two-dimensional Vortices and Collisionless Stellar Systems. Astrophys. J. 1996, 471, 385. [Google Scholar] [CrossRef]
- Moore, B.; Quinn, T.; Governato, F.; Stadel, J.; Lake, G. Cold collapse and the core catastrophe. Mon. Not. R. Astr. Soc. 1999, 310, 1147. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Mon. Not. R. Astr. Soc. 1996, 462, 563. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Wallstrom, T.C. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 1994, 49, 1613. [Google Scholar] [CrossRef]
- Chavanis, P.H. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles. Phys. Rev. E 2011, 84, 031101. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theor. Phys. 1952, 8, 143. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 2003, 68, 036108. [Google Scholar] [CrossRef] [PubMed]
- Chavanis, P.H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations. Eur. Phys. J. B 2008, 62, 179. [Google Scholar] [CrossRef]
- Frank, T.D. Non Linear Fokker-Planck Equations; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- von Weizsäcker, C.F. Zur Theorie der Kernmassen. Z. Phys. 1935, 96, 431. [Google Scholar] [CrossRef]
- Holm, D.; Marsden, J.; Ratiu, T.; Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 1985, 123, 1. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics; John Wiley: Hoboken, NJ, USA, 1963. [Google Scholar]
- Yvon, J. La Théorie Statistique des Fluides et l’Équation d’État; Hermann: Paris, France, 1935; Volume 203. [Google Scholar]
- Born, M.; Green, M.S. A General Kinetic Theory of Liquids. I. The Molecular Distribution Functions. Proc. R. Soc. Lond. A 1946, 188, 10. [Google Scholar]
- Born, M.; Green, M.S. A General Kinetic Theory of Liquids; Cambridge University Press: Cambridge, UK, 1949. [Google Scholar]
- Messer, J.; Spohn, H. Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 1982, 29, 561. [Google Scholar] [CrossRef]
- Percus, J.K. One-dimensional classical fluid with nearest-neighbor interaction in arbitrary external field. J. Stat. Phys. 1982, 28, 67. [Google Scholar] [CrossRef]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: II. Kinetic equations and stability analysis. Physica A 2006, 361, 81. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Chavanis, P.H. Hamiltonian and Brownian systems with long-range interactions: V. Stochastic kinetic equations and theory of fluctuations. Physica A 2008, 387, 5716. [Google Scholar] [CrossRef]
- Jeans, J.H. The Dynamical Theory of Gases; Cambridge University Press: Cambridge, UK, 1925. [Google Scholar]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Maxwell, J.C. Scientific Papers; Cambridge University Press: Cambridge, UK, 1890. [Google Scholar]
- Cattaneo, C. Sulla Condizione Del Calore. Atti. Semin. Mat. Fis. Univ. Modena 1948, 3, 83. [Google Scholar]
- Morrison, P.J. The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 1980, 80, 383. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Fluid Mechanics; Pergamon: London, UK, 1959. [Google Scholar]
- Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Delfini, L. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Phys. Rev. E 2014, 89, 032139. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, 1133. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chavanis, P.H.; Laurençot, P.; Lemou, M. Chapman-Enskog derivation of the generalized Smoluchowski equation. Physica A 2004, 341, 145. [Google Scholar] [CrossRef]
- Chavanis, P.H. Trapping of dust by coherent vortices in the solar nebula. Astron. Astrophys. 2000, 356, 1089. [Google Scholar]
- Chavanis, P.H. Gravitational instability of finite isothermal spheres. Astron. Astrophys. 2002, 381, 340. [Google Scholar]
- Sire, C.; Chavanis, P.H. Collapse and evaporation of a canonical self-gravitating gas. In Proceedings of the 12th Marcel Grossmann Meeting on General Relativity, UNESCO Headquarters, Paris, France, 12–18 July 2009; World Scientific: Singapore, 2012. [Google Scholar]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 1931, 38, 2265. [Google Scholar] [CrossRef]
- Chavanis, P.H. Generalized Schrödinger Equations. In preparation.
- Huang, K.; Yang, C.N. Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction. Phys. Rev. 1957, 105, 767. [Google Scholar] [CrossRef]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Landau, L.D. On the theory of superconductivity. Zh. Eksper. Teor. Fiz. 1950, 20, 1064. [Google Scholar]
- Cahn, J.W.; Hilliard, J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258. [Google Scholar] [CrossRef]
- van der Waals, J.D. De Continuiteit van den Gas-en Vloeistoftoestand. Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1873. [Google Scholar]
- van Kampen, N.G. Condensation of a Classical Gas with Long-Range Attraction. Phys. Rev. 1964, 135, A362. [Google Scholar] [CrossRef]
- Ornstein, L.S. Toepassing der Statistische Mechanica van Gibbs op Moleculair-Theoretische Vraagstukken. Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1908. [Google Scholar]
- Chavanis, P.H. Gravitational phase transitions with an exclusion constraint in position space. Eur. Phys. J. B 2014, 87, 9. [Google Scholar] [CrossRef]
- Saam, W.F.; Ebner, C. Density-functional theory of classical systems. Phys. Rev. A 1977, 15, 2566. [Google Scholar] [CrossRef]
- Ramakrishnan, T.V.; Yussouff, M. First-principles order-parameter theory of freezing. Phys. Rev. B 1979, 19, 2775. [Google Scholar] [CrossRef]
- Ornstein, L.S.; Zernike, F. Accidental Deviations of Density and Opalescence at the Critical Point of a Single Substance. R. Neth. Acad. Arts Sci. 1914, 17, 793. [Google Scholar]
- Zwanzig, R. Approximate Eigenfunctions of the Liouville Operator in Classical Many-Body Systems. Phys. Rev. 1966, 144, 170. [Google Scholar] [CrossRef]
- Percus, J.K.; Yevick, G.J. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 1958, 110, 1. [Google Scholar] [CrossRef]
- Wertheim, M.S. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Lett. 1963, 10, 321. [Google Scholar] [CrossRef]
- Thiele, E. Equation of State for Hard Spheres. J. Chem. Phys. 1963, 39, 474. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Lekner, J. Structure and Resistivity of Liquid Metals. Phys. Rev. 1966, 145, 83. [Google Scholar] [CrossRef]
- Chavanis, P.H. Jeans Instability of Dissipative Self-Gravitating Bose-Einstein Condensates with Repulsive or Attractive Self-Interaction: Application to Dark Matter. Universe 2020, 6, 226. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Vatteville, J.; Bouchet, F. Dynamics and thermodynamics of a simple model similar to self-gravitating systems: Thte HMF model. Eur. Phys. J. B 2005, 46, 61. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Delfini, L. Dynamical stability of systems with long-range interactions: Application of the Nyquist method to the HMF model. Eur. Phys. J. B 2009, 69, 389. [Google Scholar] [CrossRef]
- Chavanis, P.H. Dynamical stability of infinite homogeneous self-gravitating systems and plasmas: Application of the Nyquist method. Eur. Phys. J. B 2012, 85, 229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavanis, P.-H. Generalized Equations in Quantum Mechanics and Brownian Theory. Symmetry 2023, 15, 2195. https://doi.org/10.3390/sym15122195
Chavanis P-H. Generalized Equations in Quantum Mechanics and Brownian Theory. Symmetry. 2023; 15(12):2195. https://doi.org/10.3390/sym15122195
Chicago/Turabian StyleChavanis, Pierre-Henri. 2023. "Generalized Equations in Quantum Mechanics and Brownian Theory" Symmetry 15, no. 12: 2195. https://doi.org/10.3390/sym15122195
APA StyleChavanis, P. -H. (2023). Generalized Equations in Quantum Mechanics and Brownian Theory. Symmetry, 15(12), 2195. https://doi.org/10.3390/sym15122195