Multiwavelength Analysis of the IceCube Neutrino Source Candidate Blazar PKS 1424+240
Abstract
:1. Introduction
2. Analysis of Multiwavelength Data
2.1. Analysis of Fermi-LAT Data
2.2. Analysis of VLBA/MOJAVE Data
2.3. Archive Swift-XRT Observations
3. Results of the Analysis of the Fermi-LAT Observations
3.1. Fermi Light Curve
3.2. SED Analysis
4. Results of the Analysis of VLBA Data
4.1. Morphology
4.2. Jet Kinematics
4.3. Temporal Variation of the Doppler Factor of the VLBI Core
5. Findings Based on the Archive Swift-XRT Light Curve
6. Discussion
6.1. Lantern Regions in the Radio Jet of PKS 1424+240
6.2. No Major Gamma-Ray Flare in PKS 1424+240
7. Conclusions
- We found three quasi-stationary jet components in the 15 GHz jet of PKS 1424+240. We show that these components might be not moving plasmoids; rather, lantern regions in the jet.
- Based on the Doppler factor of the core, we unfolded a quiescence and a perturbed phase of the VLBI core of PKS 1424+240 at 15 GHz. Due to gaps in observations, we can only state that the perturbed phase started sometime after 2016.
- Based on archival Swift-XRT observation, we found two episodes of elevated X-ray activity.
- Our multiwavelength analysis suggests that if neutrinos were, indeed, generated in the source, these came between 2016 and 2018, between the possible start of the perturbed phase of the VLBI core and the end date of the time-integrated analysis of IceCube.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source ID | RA | DEC | TS | ||||
---|---|---|---|---|---|---|---|
- | - | - | - | ||||
PS J1419.7+2532 | 214.927 | 25.541 | 2.405 | 1.88 | 26.25 | 125.96 | |
PS J1412.2+2118 | 213.053 | 21.306 | 4.233 | 2.26 | 27.95 | 205.27 | |
PS J1444.6+1923 | 221.153 | 19.387 | 6.016 | 2.13 | 26.81 | 161.76 | |
PS J1420.9+1650 | 215.244 | 16.839 | 7.105 | 2.59 | 49.45 | 309.78 | |
PS J1421.9+3106 | 215.478 | 31.114 | 7.399 | 3.60 | 99.57 | 490.46 | |
PS J1359.8+1811 | 209.972 | 18.197 | 8.454 | 2.34 | 32.82 | 216.03 | |
PS J1405.3+3057 | 211.341 | 30.965 | 8.624 | 2.17 | 26.11 | 104.30 | |
PS J1353.2+3031 | 208.293 | 30.533 | 10.092 | 3.03 | 67.43 | 276.20 |
Epoch | VLBA Code | N | |||
---|---|---|---|---|---|
(mas) | (mas) | () | |||
2009.333 | BL149BK | 0.581 | 1.022 | −8.1 | 4 |
2009.481 | BL149BO | 0.633 | 1.146 | −14.7 | 3 |
2009.960 | BL149CE | 0.553 | 1.107 | −8.8 | 3 |
2010.114 | BL149CH | 0.589 | 1.175 | 0.7 | 4 |
2010.710 | BL149CP | 0.571 | 1.158 | −3.6 | 4 |
2011.619 | BL149DO | 0.635 | 1.331 | 3.2 | 4 |
2012.003 | BL178AE | 0.598 | 1.025 | −2.8 | 4 |
2012.326 | BL178AJ | 0.651 | 1.045 | −0.2 | 4 |
2013.161 | BL178BA | 0.585 | 1.139 | 0.2 | 4 |
2014.029 | BL193AD | 0.587 | 1.034 | −2.4 | 4 |
2016.422 | BL193BE | 0.594 | 1.011 | −3.6 | 4 |
2019.619 | BL273AA | 0.578 | 1.032 | −7.5 | 4 |
2019.767 | BL273AB | 0.59 | 1.021 | −4.8 | 4 |
2019.871 | BL273AC | 0.63 | 1.042 | −11.2 | 4 |
2019.953 | BL273AD | 0.569 | 1.016 | −9.7 | 4 |
2019.973 | BL229BC | 0.579 | 1.042 | −0.1 | 4 |
2020.008 | BL273AE | 0.581 | 1.026 | −7.5 | 4 |
2020.159 | BL273AF | 0.57 | 1.1 | −6.6 | 4 |
2020.233 | BL273AG | 0.614 | 1.022 | −10.0 | 4 |
2020.331 | BL273AH | 0.596 | 1.031 | −6.8 | 4 |
2020.389 | BL273AI | 0.673 | 1.438 | −28.1 | 4 |
2020.408 | BL273AJ | 0.702 | 1.069 | 10.7 | 4 |
2020.452 | BL273AK | 0.592 | 1.017 | −7.0 | 4 |
2020.580 | BL273AL | 0.599 | 0.981 | −3.9 | 4 |
2020.621 | BL273AM | 0.598 | 0.972 | −9.1 | 4 |
2020.674 | BL273AN | 0.602 | 1.045 | −7.7 | 4 |
2020.838 | BL273AO | 0.591 | 0.972 | −10.1 | 4 |
2020.912 | BL273AP | 0.641 | 1.045 | −5.9 | 4 |
Epoch | ID | Flux | FWHM | ||
---|---|---|---|---|---|
(mas) | (mas) | (Jy) | (mas) | ||
2009.333 | c0 | 0.0 ± 0.028 | 0.0 ± 0.1 | 0.113 ± 0.03 | 0.118 ± 0.001 |
c1 | 0.208 ± 0.039 | −0.233 ± 0.104 | 0.022 ± 0.007 | 0.305 ± 0.006 | |
c2 | 0.552 ± 0.13 | −0.782 ± 0.161 | 0.052 ± 0.01 | 1.275 ± 0.031 | |
c3 | 1.682 ± 0.374 | −2.47 ± 0.386 | 0.026 ± 0.006 | 3.731 ± 0.189 | |
2009.481 | c0 | 0.0 ± 0.063 | 0.0 ± 0.098 | 0.126 ± 0.029 | 0.168 ± 0.001 |
c1 | 0.398 ± 0.061 | −0.34 ± 0.097 | 0.008 ± 0.01 | 0.064 ± 0.005 | |
c2 | 0.614 ± 0.163 | −0.917 ± 0.18 | 0.044 ± 0.013 | 1.512 ± 0.093 | |
2009.960 | c0 | 0.0 ± 0.09 | 0.0 ± 0.066 | 0.116 ± 0.026 | 0.1 ± 0.0003 |
c1 | 0.294 ± 0.095 | −0.33 ± 0.071 | 0.019 ± 0.006 | 0.301 ± 0.006 | |
c2 | 0.734 ± 0.196 | −1.086 ± 0.186 | 0.051 ± 0.009 | 1.745 ± 0.04 | |
2010.114 | c0 | 0.0 ± 0.09 | 0.0 ± 0.076 | 0.118 ± 0.052 | 0.073 ± 0.001 |
c1 | 0.178 ± 0.105 | −0.145 ± 0.093 | 0.04 ± 0.007 | 0.547 ± 0.008 | |
c2 | 0.63 ± 0.159 | −0.789 ± 0.151 | 0.043 ± 0.011 | 1.307 ± 0.054 | |
c3 | 1.127 ± 0.385 | −2.031 ± 0.382 | 0.027 ± 0.007 | 3.745 ± 0.216 | |
2010.710 | c0 | 0.0 ± 0.104 | 0.0 ± 0.052 | 0.122 ± 0.032 | 0.097 ± 0.005 |
c1 | 0.268 ± 0.111 | −0.31 ± 0.065 | 0.026 ± 0.006 | 0.396 ± 0.005 | |
c2 | 0.631 ± 0.173 | −0.819 ± 0.148 | 0.046 ± 0.008 | 1.387 ± 0.029 | |
c3 | 1.163 ± 0.405 | −2.257 ± 0.395 | 0.023 ± 0.005 | 3.92 ± 0.186 | |
2011.619 | c0 | 0.0 ± 0.134 | 0.0 ± 0.015 | 0.149 ± 0.04 | 0.13 ± 0.001 |
c1 | 0.265 ± 0.135 | −0.418 ± 0.025 | 0.031 ± 0.008 | 0.237 ± 0.004 | |
c2 | 0.679 ± 0.184 | −0.844 ± 0.128 | 0.05 ± 0.007 | 1.279 ± 0.014 | |
c3 | 1.42 ± 0.441 | −2.418 ± 0.421 | 0.03 ± 0.008 | 4.206 ± 0.295 | |
2012.003 | c0 | 0.0 ± 0.097 | 0.0 ± 0.037 | 0.158 ± 0.036 | 0.125 ± 0.001 |
c1 | 0.319 ± 0.108 | −0.449 ± 0.059 | 0.047 ± 0.011 | 0.477 ± 0.008 | |
c2 | 0.931 ± 0.143 | −0.993 ± 0.111 | 0.008 ± 0.003 | 1.061 ± 0.08 | |
c3 | 0.794 ± 0.309 | −1.576 ± 0.295 | 0.041 ± 0.011 | 2.932 ± 0.179 | |
2012.326 | c0 | 0.0 ± 0.103 | 0.0 ± 0.023 | 0.164 ± 0.036 | 0.089 ± 0.0003 |
c1 | 0.249 ± 0.108 | −0.272 ± 0.04 | 0.037 ± 0.007 | 0.348 ± 0.004 | |
c2 | 0.566 ± 0.147 | −0.771 ± 0.108 | 0.04 ± 0.007 | 1.059 ± 0.017 | |
c3 | 1.174 ± 0.38 | −1.914 ± 0.367 | 0.036 ± 0.007 | 3.661 ± 0.137 | |
2013.161 | c0 | 0.0 ± 0.112 | 0.0 ± 0.026 | 0.178 ± 0.032 | 0.136 ± 0.0005 |
c1 | 0.362 ± 0.134 | −0.438 ± 0.077 | 0.062 ± 0.009 | 0.734 ± 0.006 | |
c2 | 0.39 ± 0.139 | −1.371 ± 0.086 | 0.006 ± 0.002 | 0.829 ± 0.058 | |
c3 | 1.172 ± 0.373 | −1.801 ± 0.357 | 0.035 ± 0.008 | 3.564 ± 0.173 | |
2014.029 | c0 | 0.0 ± 0.077 | 0.0 ± 0.07 | 0.222 ± 0.023 | 0.085 ± 0.00006 |
c1 | 0.207 ± 0.083 | −0.21 ± 0.077 | 0.055 ± 0.007 | 0.33 ± 0.001 | |
c2 | 0.485 ± 0.115 | −0.682 ± 0.111 | 0.068 ± 0.005 | 0.859 ± 0.002 | |
c3 | 1.142 ± 0.416 | −2.037 ± 0.415 | 0.041 ± 0.007 | 4.086 ± 0.098 | |
2016.422 | c0 | 0.0 ± 0.091 | 0.0 ± 0.045 | 0.253 ± 0.035 | 0.05 ± 0.00003 |
c1 | 0.088 ± 0.093 | −0.227 ± 0.049 | 0.126 ± 0.015 | 0.191 ± 0.0 | |
c2 | 0.562 ± 0.115 | −0.506 ± 0.083 | 0.083 ± 0.008 | 0.699 ± 0.002 | |
c3 | 0.835 ± 0.183 | −1.309 ± 0.165 | 0.056 ± 0.008 | 1.584 ± 0.024 | |
2019.619 | c0 | 0.0 ± 0.036 | 0.0 ± 0.097 | 0.261 ± 0.031 | 0.05 ± 0.00002 |
c1 | 0.203 ± 0.05 | −0.391 ± 0.103 | 0.086 ± 0.01 | 0.354 ± 0.001 | |
c2 | 0.918 ± 0.123 | −0.887 ± 0.153 | 0.077 ± 0.013 | 1.179 ± 0.022 | |
c3 | 1.49 ± 0.348 | −2.615 ± 0.36 | 0.038 ± 0.01 | 3.464 ± 0.194 | |
2019.767 | c0 | 0.0 ± 0.012 | 0.0 ± 0.102 | 0.266 ± 0.026 | 0.081 ± 0.00004 |
c1 | 0.194 ± 0.044 | −0.395 ± 0.11 | 0.095 ± 0.012 | 0.428 ± 0.002 | |
c2 | 0.945 ± 0.127 | −0.902 ± 0.163 | 0.079 ± 0.013 | 1.272 ± 0.024 | |
c3 | 1.422 ± 0.382 | −2.459 ± 0.395 | 0.056 ± 0.012 | 3.818 ± 0.155 | |
2019.871 | c0 | 0.0 ± 0.022 | 0.0 ± 0.102 | 0.249 ± 0.042 | 0.05 ± 0.00005 |
c1 | 0.181 ± 0.041 | −0.392 ± 0.108 | 0.1 ± 0.011 | 0.353 ± 0.001 | |
c2 | 0.975 ± 0.122 | −0.904 ± 0.158 | 0.074 ± 0.011 | 1.205 ± 0.016 | |
c3 | 1.425 ± 0.377 | −2.464 ± 0.39 | 0.045 ± 0.011 | 3.76 ± 0.196 | |
2019.953 | c0 | 0.0 ± 0.098 | 0.0 ± 0.028 | 0.234 ± 0.048 | 0.066 ± 0.00012 |
c1 | 0.179 ± 0.103 | −0.389 ± 0.042 | 0.099 ± 0.011 | 0.323 ± 0.001 | |
c2 | 0.921 ± 0.156 | −0.887 ± 0.125 | 0.07 ± 0.012 | 1.217 ± 0.022 | |
c3 | 1.462 ± 0.383 | −2.298 ± 0.372 | 0.053 ± 0.012 | 3.705 ± 0.156 | |
2019.973 | c0 | 0.0 ± 0.104 | 0.0 ± 0.013 | 0.231 ± 0.027 | 0.072 ± 0.00005 |
c1 | 0.178 ± 0.108 | −0.381 ± 0.032 | 0.106 ± 0.019 | 0.301 ± 0.002 | |
c2 | 0.903 ± 0.162 | −0.868 ± 0.124 | 0.073 ± 0.006 | 1.239 ± 0.005 | |
c3 | 1.442 ± 0.389 | −2.367 ± 0.375 | 0.052 ± 0.011 | 3.75 ± 0.148 | |
2020.008 | c0 | 0.0 ± 0.036 | 0.0 ± 0.096 | 0.237 ± 0.038 | 0.07 ± 0.00009 |
c1 | 0.181 ± 0.049 | −0.386 ± 0.102 | 0.112 ± 0.009 | 0.335 ± 0.0 | |
c2 | 0.925 ± 0.127 | −0.894 ± 0.156 | 0.07 ± 0.011 | 1.224 ± 0.018 | |
c3 | 1.475 ± 0.375 | −2.412 ± 0.385 | 0.052 ± 0.011 | 3.728 ± 0.139 | |
2020.159 | c0 | 0.0 ± 0.105 | 0.0 ± 0.035 | 0.225 ± 0.026 | 0.059 ± 0.00003 |
c1 | 0.203 ± 0.111 | −0.396 ± 0.051 | 0.101 ± 0.008 | 0.383 ± 0.001 | |
c2 | 0.935 ± 0.151 | −0.918 ± 0.114 | 0.057 ± 0.008 | 1.092 ± 0.013 | |
c3 | 1.408 ± 0.322 | −2.252 ± 0.307 | 0.04 ± 0.009 | 3.047 ± 0.124 | |
2020.233 | c0 | 0.0 ± 0.086 | 0.0 ± 0.056 | 0.201 ± 0.045 | 0.05 ± 0.00009 |
c1 | 0.17 ± 0.092 | −0.377 ± 0.065 | 0.113 ± 0.012 | 0.343 ± 0.001 | |
c2 | 0.867 ± 0.145 | −0.886 ± 0.13 | 0.066 ± 0.009 | 1.17 ± 0.013 | |
c3 | 1.528 ± 0.34 | −2.415 ± 0.334 | 0.045 ± 0.008 | 3.289 ± 0.101 | |
2020.331 | c0 | 0.0 ± 0.09 | 0.0 ± 0.051 | 0.192 ± 0.04 | 0.07 ± 0.00015 |
c1 | 0.185 ± 0.098 | −0.406 ± 0.064 | 0.104 ± 0.012 | 0.39 ± 0.001 | |
c2 | 0.891 ± 0.147 | −0.89 ± 0.127 | 0.06 ± 0.006 | 1.167 ± 0.008 | |
c3 | 1.506 ± 0.363 | −2.307 ± 0.356 | 0.051 ± 0.009 | 3.52 ± 0.099 | |
2020.389 | c0 | 0.0 ± 0.142 | 0.0 ± 0.025 | 0.184 ± 0.022 | 0.05 ± 0.00004 |
c1 | 0.195 ± 0.147 | −0.453 ± 0.047 | 0.11 ± 0.006 | 0.398 ± 0.001 | |
c2 | 0.926 ± 0.185 | −0.862 ± 0.121 | 0.06 ± 0.006 | 1.184 ± 0.007 | |
c3 | 1.39 ± 0.385 | −2.382 ± 0.359 | 0.05 ± 0.009 | 3.577 ± 0.103 | |
2020.408 | c0 | 0.0 ± 0.032 | 0.0 ± 0.103 | 0.18 ± 0.018 | 0.083 ± 0.00006 |
c1 | 0.192 ± 0.051 | −0.439 ± 0.11 | 0.097 ± 0.006 | 0.409 ± 0.001 | |
c2 | 0.904 ± 0.125 | −0.866 ± 0.159 | 0.061 ± 0.008 | 1.215 ± 0.014 | |
c3 | 1.55 ± 0.37 | −2.409 ± 0.383 | 0.046 ± 0.009 | 3.688 ± 0.128 | |
2020.452 | c0 | 0.00005 ± 0.077 | 0.0 ± 0.067 | 0.179 ± 0.017 | 0.093 ± 0.0 |
c1 | 0.197 ± 0.087 | −0.46 ± 0.079 | 0.111 ± 0.01 | 0.418 ± 0.001 | |
c2 | 0.903 ± 0.14 | −0.889 ± 0.135 | 0.059 ± 0.008 | 1.177 ± 0.014 | |
c3 | 1.422 ± 0.367 | −2.266 ± 0.365 | 0.054 ± 0.01 | 3.591 ± 0.103 | |
2020.580 | c0 | 0.0 ± 0.072 | 0.0 ± 0.069 | 0.179 ± 0.019 | 0.122 ± 0.00012 |
c1 | 0.214 ± 0.082 | −0.51 ± 0.079 | 0.109 ± 0.011 | 0.41 ± 0.001 | |
c2 | 0.861 ± 0.136 | −0.825 ± 0.134 | 0.057 ± 0.009 | 1.159 ± 0.019 | |
c3 | 1.363 ± 0.39 | −2.146 ± 0.39 | 0.066 ± 0.011 | 3.836 ± 0.103 | |
2020.621 | c0 | 0.0 ± 0.092 | 0.0 ± 0.032 | 0.179 ± 0.03 | 0.079 ± 0.00011 |
c1 | 0.201 ± 0.099 | −0.49 ± 0.048 | 0.09 ± 0.014 | 0.372 ± 0.002 | |
c2 | 0.807 ± 0.145 | −0.87 ± 0.116 | 0.059 ± 0.01 | 1.115 ± 0.019 | |
c3 | 1.601 ± 0.39 | −2.282 ± 0.38 | 0.047 ± 0.01 | 3.789 ± 0.151 | |
2020.674 | c0 | 0.0 ± 0.018 | 0.0 ± 0.104 | 0.168 ± 0.024 | 0.076 ± 0.00008 |
c1 | 0.215 ± 0.042 | −0.493 ± 0.11 | 0.096 ± 0.009 | 0.391 ± 0.001 | |
c2 | 0.859 ± 0.113 | −0.883 ± 0.152 | 0.059 ± 0.008 | 1.116 ± 0.011 | |
c3 | 1.458 ± 0.388 | −2.516 ± 0.401 | 0.055 ± 0.01 | 3.879 ± 0.11 | |
2020.838 | c0 | 0.0 ± 0.076 | 0.0 ± 0.061 | 0.159 ± 0.04 | 0.05 ± 0.0001 |
c1 | 0.236 ± 0.083 | −0.506 ± 0.07 | 0.072 ± 0.012 | 0.349 ± 0.002 | |
c2 | 0.785 ± 0.138 | −0.844 ± 0.13 | 0.055 ± 0.009 | 1.154 ± 0.018 | |
c3 | 1.825 ± 0.404 | −2.474 ± 0.401 | 0.055 ± 0.012 | 3.966 ± 0.161 | |
2020.912 | c0 | 0.0 ± 0.097 | 0.0 ± 0.04 | 0.153 ± 0.021 | 0.078 ± 0.00009 |
c1 | 0.222 ± 0.103 | −0.481 ± 0.053 | 0.071 ± 0.007 | 0.353 ± 0.001 | |
c2 | 0.841 ± 0.143 | −0.843 ± 0.112 | 0.054 ± 0.007 | 1.051 ± 0.01 | |
c3 | 1.42 ± 0.388 | −2.377 ± 0.378 | 0.048 ± 0.009 | 3.758 ± 0.113 |
References
- Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; et al. Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 2010, 685, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Search for Anisotropy of Ultrahigh Energy Cosmic Rays with the Telescope Array Experiment. Astrophys. J. 2012, 757, 26. [Google Scholar] [CrossRef] [Green Version]
- Biermann, P.L.; Becker Tjus, J.; de Boer, W.; Caramete, L.I.; Chieffi, A.; Diehl, R.; Gebauer, I.; Gergely, L.Á.; Haug, E.; Kronberg, P.P.; et al. Supernova explosions of massive stars and cosmic rays. Adv. Space Res. 2018, 62, 2773–2816. [Google Scholar] [CrossRef] [Green Version]
- Saftoiu, A.; Pierre Auger Collaboration. Overview of the Pierre Auger observatory dedicated to the study of cosmic rays. In Proceedings of the American Institute of Physics Conference Series, Sinaia, Romania, 1–14 July 2018; AIP Publishing: Long Island, NY, USA, 2019; Volume 2076, p. 030009. [Google Scholar] [CrossRef]
- Novotný, V.; The Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez-Muniz, J.; Alves Batista, R.; Anastasi, G.A.; et al. Energy spectrum of cosmic rays measured using the Pierre Auger Observatory. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 324. [Google Scholar] [CrossRef]
- Becker, J.K. High-energy neutrinos in the context of multimessenger astrophysics. Phys. Rep. 2008, 458, 173–246. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Razzaque, S.; Finke, J.D.; Atoyan, A. Ultra-high-energy cosmic rays from black hole jets of radio galaxies. New J. Phys. 2009, 11, 065016. [Google Scholar] [CrossRef]
- Greisen, K. End to the Cosmic-Ray Spectrum? Phys. Rev. Lett. 1966, 16, 748–750. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuz’min, V.A. Upper Limit of the Spectrum of Cosmic Rays. Sov. J. Exp. Theor. Phys. Lett. 1966, 4, 78. [Google Scholar]
- Stecker, F.W. Effect of Photomeson Production by the Universal Radiation Field on High-Energy Cosmic Rays. Phys. Rev. Lett. 1968, 21, 1016–1018. [Google Scholar] [CrossRef] [Green Version]
- Stanev, T.; Engel, R.; Mücke, A.; Protheroe, R.J.; Rachen, J.P. Propagation of ultrahigh energy protons in the nearby universe. Phys. Rev. D 2000, 62, 093005. [Google Scholar] [CrossRef]
- Owen, E.R.; Han, Q.; Wu, K.; Yap, Y.X.J.; Surajbali, P. Ultra-High-energy Cosmic Rays from beyond the Greisen-Zatsepin-Kuz’min Horizon. Astrophys. J. 2021, 922, 32. [Google Scholar] [CrossRef]
- Alnussirat, S.T.; Barghouty, A.F.; Webb, G.M.; Biermann, P.L. “Super GZK” Particles in a Classic Kramers’ Diffusion-over-a-barrier Model. I. The Case of Protons. Astrophys. J. 2021, 915, 11. [Google Scholar] [CrossRef]
- Kalashev, O.E.; Khrenov, B.A.; Klimov, P.; Sharakin, S.; Troitsky, S.V. Global anisotropy of arrival directions of ultra-high-energy cosmic rays: Capabilities of space-based detectors. J. Cosmol. Astropart. Phys. 2008, 2008, 003. [Google Scholar] [CrossRef]
- IceCube Collaboration; Fermi-LAT; MAGIC; AGILE; ASAS-SN; HAWC; HESS; INTEGRAL; KANATA; KISO; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, 147. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A.J.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef] [PubMed]
- IceCube Collaboration. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- Archambault, S.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Biteau, J.; Bugaev, V.; Byrum, K.; et al. Deep Broadband Observations of the Distant Gamma-Ray Blazar PKS 1424+240. Astrophys. J. Lett. 2014, 785, L16. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. MAGIC long-term study of the distant TeV blazar PKS 1424+240 in a multiwavelength context. Astron. Astrophys. 2014, 567, A135. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Testing two-component models on very high-energy gamma-ray-emitting BL Lac objects. Astron. Astrophys. 2020, 640, A132. [Google Scholar] [CrossRef]
- Padovani, P.; Boccardi, B.; Falomo, R.; Giommi, P. PKS 1424+240: Yet another masquerading BL Lac object as a possible IceCube neutrino source. Mon. Not. R. Astron. Soc. 2022, 511, 4697–4701. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P.; Falomo, R.; Oikonomou, F.; Petropoulou, M.; Glauch, T.; Resconi, E.; Treves, A.; Paiano, S. The spectra of IceCube neutrino (SIN) candidate sources—II. Source characterization. Mon. Not. R. Astron. Soc. 2022, 510, 2671–2688. [Google Scholar] [CrossRef]
- Zhou, B.; Kamionkowski, M.; Liang, Y.f. Search for high-energy neutrino emission from radio-bright AGN. Phys. Rev. D 2021, 103, 123018. [Google Scholar] [CrossRef]
- Desai, A.; Vandenbroucke, J.; Pizzuto, A. Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data. arXiv 2021, arXiv:2107.08115. [Google Scholar]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 8, 807–814. [Google Scholar] [CrossRef]
- Kun, E.; Biermann, P.L.; Gergely, L.Á. Very long baseline interferometry radio structure and radio brightening of the high-energy neutrino emitting blazar TXS 0506+056. Mon. Not. R. Astron. Soc. 2019, 483, L42–L46. [Google Scholar] [CrossRef] [Green Version]
- Britzen, S.; Fendt, C.; Böttcher, M.; Zajaček, M.; Jaron, F.; Pashchenko, I.N.; Araudo, A.; Karas, V.; Kurtanidze, O. A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? Astron. Astrophys. 2019, 630, A103. [Google Scholar] [CrossRef] [Green Version]
- Ros, E.; Kadler, M.; Perucho, M.; Boccardi, B.; Cao, H.M.; Giroletti, M.; Krauß, F.; Ojha, R. Apparent superluminal core expansion and limb brightening in the candidate neutrino blazar TXS 0506+056. Astron. Astrophys. 2020, 633, L1. [Google Scholar] [CrossRef] [Green Version]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Britzen, S.; Zajaček, M.; Popović, L.Č.; Fendt, C.; Tramacere, A.; Pashchenko, I.N.; Jaron, F.; Pánis, R.; Petrov, L.; Aller, M.F.; et al. A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. Mon. Not. R. Astron. Soc. 2021, 503, 3145–3178. [Google Scholar] [CrossRef]
- Hovatta, T.; Lindfors, E.; Kiehlmann, S.; Max-Moerbeck, W.; Hodges, M.; Liodakis, I.; Lähteemäki, A.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.A.; et al. Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories. Astron. Astrophys. 2021, 650, A83. [Google Scholar] [CrossRef]
- Rodrigues, X.; Garrappa, S.; Gao, S.; Paliya, V.S.; Franckowiak, A.; Winter, W. Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106. Astrophys. J. 2021, 912, 54. [Google Scholar] [CrossRef]
- Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Atlee, D.W.; Bahcall, J.N.; Bai, X.; Baret, B.; Bartelt, M.; Barwick, S.W.; et al. On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes. Astropart. Phys. 2006, 26, 282–300. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.; Otrupcek, R. Parkes Catalog, 1990, Australia telescope national facility. PKS Catalog 1990. Available online: https://heasarc.gsfc.nasa.gov/W3Browse/all/pkscat90.html (accessed on 22 December 2022).
- Lister, M.L.; Cohen, M.H.; Homan, D.C.; Kadler, M.; Kellermann, K.I.; Kovalev, Y.Y.; Ros, E.; Savolainen, T.; Zensus, J.A. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets. Astron. J. 2009, 138, 1874–1892. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P.; Mastichiadis, A.; Resconi, E. Photohadronic origin of γ-ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. R. Astron. Soc. 2015, 448, 2412–2429. [Google Scholar] [CrossRef]
- Petropoulou, M.; Mastichiadis, A. Bethe-Heitler emission in BL Lacs: Filling the gap between X-rays and γ-rays. Mon. Not. R. Astron. Soc. 2015, 447, 36–48. [Google Scholar] [CrossRef]
- Murase, K.; Oikonomou, F.; Petropoulou, M. Blazar Flares as an Origin of High-energy Cosmic Neutrinos? Astrophys. J. 2018, 865, 124. [Google Scholar] [CrossRef]
- Rodrigues, X.; Gao, S.; Fedynitch, A.; Palladino, A.; Winter, W. Leptohadronic Blazar Models Applied to the 2014-2015 Flare of TXS 0506+056. Astrophys. J. Lett. 2019, 874, L29. [Google Scholar] [CrossRef] [Green Version]
- Halzen, F.; Kheirandish, A. Black holes associated with cosmic neutrino flares. Nat. Phys. 2020, 16, 498–500. [Google Scholar] [CrossRef]
- Ananna, T.T.; Treister, E.; Urry, C.M.; Ricci, C.; Kirkpatrick, A.; LaMassa, S.; Buchner, J.; Civano, F.; Tremmel, M.; Marchesi, S. The Accretion History of AGNs. I. Supermassive Black Hole Population Synthesis Model. Astrophys. J. 2019, 871, 240. [Google Scholar] [CrossRef] [Green Version]
- Ananna, T.T.; Urry, C.M.; Treister, E.; Hickox, R.C.; Shankar, F.; Ricci, C.; Cappelluti, N.; Marchesi, S.; Turner, T.J. Accretion History of AGNs. III. Radiative Efficiency and AGN Contribution to Reionization. Astrophys. J. 2020, 903, 85. [Google Scholar] [CrossRef]
- Treister, E.; Urry, C.M.; Virani, S. The Space Density of Compton-Thick Active Galactic Nucleus and the X-Ray Background. Astrophys. J. 2009, 696, 110–120. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Mattox, J.R.; Bertsch, D.L.; Chiang, J.; Dingus, B.L.; Digel, S.W.; Esposito, J.A.; Fierro, J.M.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; et al. The Likelihood Analysis of EGRET Data. Astrophys. J. 1996, 461, 396. [Google Scholar] [CrossRef]
- Shepherd, M.C. Difmap: An Interactive Program for Synthesis Imaging. In Proceedings of the Astronomical Data Analysis Software and Systems VI, Baltimore, MD, USA, 25–28 September 1994; Hunt, G., Payne, H., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 125, p. 77. [Google Scholar]
- Kun, E.; Gabányi, K.É.; Karouzos, M.; Britzen, S.; Gergely, L.Á. A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet. Mon. Not. R. Astron. Soc. 2014, 445, 1370–1382. [Google Scholar] [CrossRef]
- Kun, E.; Frey, S.; Gabányi, K.É.; Britzen, S.; Cseh, D.; Gergely, L.Á. Constraining the parameters of the putative supermassive binary black hole in PG 1302-102 from its radio structure. Mon. Not. R. Astron. Soc. 2015, 454, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Stroh, M.C.; Falcone, A.D. Swift X-Ray Telescope Monitoring of Fermi-LAT Gamma-Ray Sources of Interest. Astrophys. J. Supp. Ser. 2013, 207, 28. [Google Scholar] [CrossRef] [Green Version]
- Lott, B.; Escande, L.; Larsson, S.; Ballet, J. An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data. Astron. Astrophys. 2012, 544, A6. [Google Scholar] [CrossRef] [Green Version]
- Scargle, J.D.; Norris, J.P.; Jackson, B.; Chiang, J. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations. Astrophys. J. 2013, 764, 167. [Google Scholar] [CrossRef] [Green Version]
- Garrappa, E.A. Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. Astrophys. J. 2019, 880, 103. [Google Scholar] [CrossRef] [Green Version]
- Paiano, S.; Landoni, M.; Falomo, R.; Treves, A.; Scarpa, R.; Righi, C. On the Redshift of TeV BL Lac Objects. Astrophys. J. 2017, 837, 144. [Google Scholar] [CrossRef]
- Kun, E.; Bartos, I.; Tjus, J.B.; Biermann, P.L.; Halzen, F.; Mezo, G. Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars. Astrophys. J. Lett. 2021, 911, L18. [Google Scholar] [CrossRef]
- Fang, K.; Gallagher, J.S.; Halzen, F. The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources. Astrophys. J. 2022, 933, 190. [Google Scholar] [CrossRef]
- Rector, T.A.; Gabuzda, D.C.; Stocke, J.T. The Radio Structure of High-Energy-Peaked BL Lacertae Objects. Astron. J. 2003, 125, 1060–1072. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; An, T.; Sohn, B.W.; Hong, X.; Wang, A. Parsec-scale properties of eight Fanaroff-Riley type 0 radio galaxies. Mon. Not. R. Astron. Soc. 2021, 506, 1609–1622. [Google Scholar] [CrossRef]
- Shao, C.; Cheng, X.; Thomas Tam, P.H.; Yang, L.; Cui, Y.; Pal, P.S.; Zhang, Z.; Sohn, B.W.; Sugiyama, K.; Chen, W.; et al. Is Fermi 1544-0649 a Misaligned Blazar? Discovering the Jet Structure with Very Long Baseline Interferometry. Astrophys. J. 2022, 934, 39. [Google Scholar] [CrossRef]
- Kun, E.; Jaroschewski, I.; Ghorbanietemad, A.; Frey, S.; Becker Tjus, J.; Britzen, S.; Gabányi, K.É.; Kiselev, V.; Schlegel, L.; Schroller, M.; et al. Multimessenger Picture of J1048+7143. Astrophys. J. 2022, 940, 163. [Google Scholar] [CrossRef]
- Condon, J.J.; Condon, M.A.; Gisler, G.; Puschell, J.J. Strong radio sources in bright spiral galaxies. II - Rapid star formation and galaxy-galaxy interactions. Astrophys. J. 1982, 252, 102–124. [Google Scholar] [CrossRef]
- Homan, D.C.; Kovalev, Y.Y.; Lister, M.L.; Ros, E.; Kellermann, K.I.; Cohen, M.H.; Vermeulen, R.C.; Zensus, J.A.; Kadler, M. Intrinsic Brightness Temperatures of AGN Jets. Astrophys. J. Lett. 2006, 642, L115–L118. [Google Scholar] [CrossRef] [Green Version]
- Scheuer, P.A.G.; Readhead, A.C.S. Superluminally expanding radio sources and the radio-quiet QSOs. Nature 1979, 277, 182–185. [Google Scholar] [CrossRef]
- Kadler, M.; Bach, U.; Berge, D.; Buson, S.; Dorner, D.; Edwards, P.G.; Eppel, F.; Giroletti, M.; Gokus, A.; Hervet, O.; et al. TELAMON: Monitoring of AGN with the Effelsberg 100-m Telescope in the Context of Astroparticle Physics. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 974. [Google Scholar] [CrossRef]
- Kun, E.; Karouzos, M.; Gabányi, K.É.; Britzen, S.; Kurtanidze, O.M.; Gergely, L.Á. Flaring radio lanterns along the ridge line: Long-term oscillatory motion in the jet of S5 1803+784. Mon. Not. R. Astron. Soc. 2018, 478, 359–370. [Google Scholar] [CrossRef]
- Britzen, S.; Witzel, A.; Krichbaum, T.P.; Beckert, T.; Campbell, R.M.; Schalinski, C.; Campbell, J. The radio structure of S5 1803+784. Mon. Not. R. Astron. Soc. 2005, 362, 966–974. [Google Scholar] [CrossRef]
- Haack, C.; Wiebusch, C.; IceCube Collaboration. A measurement of the diffuse astrophysical muon neutrino flux using eight years of IceCube data. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Republic of Korea, 12–20 July 2017; Volume 301, p. 1005. [Google Scholar]
Component | ||
---|---|---|
(mas yr) | (c) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kun, E.; Medveczky, A. Multiwavelength Analysis of the IceCube Neutrino Source Candidate Blazar PKS 1424+240. Symmetry 2023, 15, 270. https://doi.org/10.3390/sym15020270
Kun E, Medveczky A. Multiwavelength Analysis of the IceCube Neutrino Source Candidate Blazar PKS 1424+240. Symmetry. 2023; 15(2):270. https://doi.org/10.3390/sym15020270
Chicago/Turabian StyleKun, Emma, and Attila Medveczky. 2023. "Multiwavelength Analysis of the IceCube Neutrino Source Candidate Blazar PKS 1424+240" Symmetry 15, no. 2: 270. https://doi.org/10.3390/sym15020270
APA StyleKun, E., & Medveczky, A. (2023). Multiwavelength Analysis of the IceCube Neutrino Source Candidate Blazar PKS 1424+240. Symmetry, 15(2), 270. https://doi.org/10.3390/sym15020270