Smart Root Search (SRS) in Solving Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC) Problems
Abstract
:1. Introduction
1.1. Literature Review
2. Problem and Algorithm Description
2.1. Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC)
2.2. Smart Root Search (SRS) Algorithm
- The soil environment for plant roots was interpreted as the search space which contains all the problem’s possible candidate solutions.
- The plant root set was considered as the solutions’ vector.
- The root was regarded as the solution.
- The nitrate concentration was considered as the objective function employed for evaluating the solution.
- The location of the highest nitrate concentration was considered as the optimal solution, whose objective function value is minimized.
- The growth steps were interpreted as iterations.
- Hair roots germination represented the local search operator.
- Root growth was interpreted as the solution movement.
- The concept of root drouth represented solution elimination.
- The root growth speed was interpreted as the velocity of movement of the solution.
- The concept of root branching was interpreted as solution reproduction.
- The immature root was considered as a limited-move solution.
- The growth direction was regarded as a movement coefficient set.
3. Experimental Design
3.1. STCOCCSC Dataset
3.2. Experimental STCOCCSC Problems
3.3. SRS Execution
3.4. SRS Performance Evaluation
4. Results and Discussion
4.1. Improvement Percentage of the Solutions Obtained by the SRS
4.2. Performance Statistical Tests
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ying, G.-G.; Yu, X.-Y.; Kookana, R.S. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ. Pollut. 2007, 150, 300–305. [Google Scholar] [CrossRef]
- Knuth, D. Sorting and searching. Art Comput. Program. 1998, 3, 513. [Google Scholar]
- Singer, B.; Veloso, M. Stochastic search for signal processing algorithm optimization. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, Denver, CO, USA, 10–16 November 2001; p. 22. [Google Scholar]
- Dorigo, M. Ant colony optimization. Scholarpedia 2007, 2, 1461. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN‘95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Jung, J.K.H.M.; McCouch, S.R.M. Getting to the roots of it: Genetic and hormonal control of root architecture. Front. Plant Sci. 2013, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Naseri, N.K.; Sundararajan, E.A.; Ayob, M.; Jula, A. Smart Root Search (SRS): A Novel Nature-Inspired Search Algorithm. Symmetry 2020, 12, 2025. [Google Scholar] [CrossRef]
- Naseri, N.K.; Sundararajan, E.; Ayob, M.; Jula, A. Smart Root Search (SRS): A New Search Algorithm to Investigate Combinatorial Problems. In Proceedings of the 2015 Seventh International Conference on Computational Intelligence, Modelling and Simulation (CIMSim), Kuantan, Malaysia, 27–29 July 2015; pp. 11–16. [Google Scholar]
- Jula, A.; Sundararajan, E.; Othman, Z. Cloud computing service composition: A systematic literature review. Expert Syst. Appl. 2014, 41, 3809–3824. [Google Scholar] [CrossRef]
- Cao, B.; Sun, Z.; Zhang, J.; Gu, Y. Resource Allocation in 5G IoV Architecture Based on SDN and Fog-Cloud Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3832–3840. [Google Scholar] [CrossRef]
- Kavre, M.S.; Gardas, B.B.; Narwane, V.S.; Navimipour, N.J.; Yalçın, Ş. Evaluating the Effect of Human Factors on Big Data Analytics and Cloud of Things Adoption in the Manufacturing Micro, Small, and Medium Enterprises. IT Prof. 2022, 24, 17–26. [Google Scholar] [CrossRef]
- Li, T.; Xia, T.; Wang, H.; Tu, Z.; Tarkoma, S.; Han, Z.; Hui, P. Smartphone App Usage Analysis: Datasets, Methods, and Applications. IEEE Commun. Surv. Tutor. 2022, 24, 937–966. [Google Scholar] [CrossRef]
- Jula, A.; Othman, Z.; Sundararajan, E. A hybrid imperialist competitive-gravitational attraction search algorithm to optimize cloud service composition. In Proceedings of the 2013 IEEE Workshop on Memetic Computing (MC), Singapore, 16–19 April 2013; pp. 37–43. [Google Scholar]
- Bartz-Beielstein, T.; Chiarandini, M.; Paquete, L.; Preuss, M. Experimental Methods for the Analysis of Optimization Algorithms; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Dodig-Crnkovic, G. Computer Science in a Theory of Science Discourse. Ph.D. Thesis, Mälardalen University, Västerås, Sweden, 2002. [Google Scholar]
- Michalewicz, Z.; Fogel, D.B. Constraint-Handling Techniques. In How to Solve It: Modern Heuristics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 231–270. [Google Scholar]
- Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 74. [Google Scholar]
- Dang, W.; Guo, J.; Liu, M.; Liu, S.; Yang, B.; Yin, L.; Zheng, W. A Semi-Supervised Extreme Learning Machine Algorithm Based on the New Weighted Kernel for Machine Smell. Appl. Sci. 2022, 12, 9213. [Google Scholar] [CrossRef]
- Lu, S.; Guo, J.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. An Improved Algorithm of Drift Compensation for Olfactory Sensors. Appl. Sci. 2022, 12, 9529. [Google Scholar] [CrossRef]
- Hashemi, M.; Javaheri, D.; Sabbagh, P.; Arandian, B.; Abnoosian, K. A multi-objective method for virtual machines allocation in cloud data centres using an improved grey wolf optimization algorithm. IET Commun. 2021, 15, 2342–2353. [Google Scholar] [CrossRef]
- Ni, Q.; Guo, J.; Wu, W.; Wang, H. Influence-Based Community Partition with Sandwich Method for Social Networks. IEEE Trans. Comput. Soc. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Tarawneh, H.; Alhadid, I.; Khwaldeh, S.; Afaneh, S. An Intelligent Cloud Service Composition Optimization Using Spider Monkey and Multistage Forward Search Algorithms. Symmetry 2022, 14, 82. [Google Scholar] [CrossRef]
- Singh, M.P. Physics of service composition. IEEE Internet Comput. 2001, 5, 6–7. [Google Scholar] [CrossRef]
- Schmid, S.; Chart, T.; Sifalakis, M.; Scott, A. Flexible, Dynamic, and Scalable Service Composition for Active Routers. In Proceedings of the IFIP-TC6 4th International Working Conference on Active Networks, Zurich, Switzerland, 4–6 December 2002; pp. 253–266. [Google Scholar]
- Kosuga, M.; Kirimoto, N.; Yamazaki, T.; Nakanishi, T.; Masuzaki, M.; Hasuike, K. A multimedia service composition scheme for ubiquitous networks. J. Netw. Comput. Appl. 2002, 25, 279–293. [Google Scholar] [CrossRef]
- Milanovic, N.; Malek, M. Current solutions for Web service composition. IEEE Internet Comput. 2004, 8, 51–59. [Google Scholar] [CrossRef]
- Kofler, K.; ul Haq, I.; Schikuta, E. A Parallel Branch and Bound Algorithm for Workflow QoS Optimization. In Proceedings of the Parallel Processing, 2009, ICPP ‘09 International Conference on Parallel Processing, Vienna, Austria, 22–25 September 2009; pp. 478–485. [Google Scholar]
- Zeng, C.; Guo, X.A.; Ou, W.J.; Han, D. Cloud Computing Service Composition and Search Based on Semantic. In Cloud Computing, Proceedings; Jaatun, M.G., Zhao, G., Rong, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germeny, 2009; Volume 5931, pp. 290–300. [Google Scholar]
- Liu, L.; Zhu, H.; Chen, S.; Huang, Z. Privacy regulation aware service selection for multi-provision cloud service composition. Future Gener. Comput. Syst. 2022, 126, 263–278. [Google Scholar] [CrossRef]
- Jula, A.; Nilsaz, H.; Sundararajan, E.; Othman, Z. A New Dataset and Benchmark for Cloud Computing Service Composition. In Proceedings of the 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, 27–29 January 2014; pp. 83–86. [Google Scholar]
- Amiri, Z.; Heidari, A.; Navimipour, N.J.; Unal, M. Resilient and dependability management in distributed environments: A systematic and comprehensive literature review. Clust. Comput. 2022, 1–36. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2011; p. 696. [Google Scholar]
- Neapolitan, R.E.; Neapolitan, R.; Naimipour, K. Foundations of Algorithms; Jones & Bartlett Learning: Burlington, MA, USA, 2011. [Google Scholar]
- López-Bucio, J.; Cruz-Ramırez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Linkohr, B.I.; Williamson, L.C.; Fitter, A.H.; Leyser, H.O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 2002, 29, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Gao, X.; Liao, L.; Harberd, N.P.; Fu, X. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol. 2007, 145, 1460–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, T.R.; Lynch, J.P. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am. J. Bot. 2000, 87, 964–970. [Google Scholar] [CrossRef] [Green Version]
- Rubio, V.; Bustos, R.; Irigoyen, M.L.; Cardona-López, X.; Rojas-Triana, M.; Paz-Ares, J. Plant hormones and nutrient signaling. Plant Mol. Biol. 2009, 69, 361–373. [Google Scholar] [CrossRef]
- López-Bucio, J.; Hernández-Abreu, E.; Sánchez-Calderón, L.; Nieto-Jacobo, M.F.; Simpson, J.; Herrera-Estrella, L. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 2002, 129, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Nacry, P.; Canivenc, G.; Muller, B.; Azmi, A.; Van Onckelen, H.; Rossignol, M.; Doumas, P. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 2005, 138, 2061–2074. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.; Lynch, J.P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ. 1996, 19, 529–538. [Google Scholar] [CrossRef]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Its Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Plant Breeding for Water-Limited Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hultine, K.; Cable, W.; Burgess, S.; Williams, D. Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte. Tree Physiol. 2003, 23, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Hydraulic lift promotes selective root foraging in nutrient-rich soil patches. Funct. Plant Biol. 2012, 39, 804–812. [Google Scholar] [CrossRef]
- Bates, T.R.; Lynch, J.P. Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 2000, 87, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Jula, A.; Sundararajan, E.A.; Othman, Z.; Naseri, N.K. Color Revolution: A Novel Operator for Imperialist Competitive Algorithm in Solving Cloud Computing Service Composition Problem. Symmetry 2021, 13, 177. [Google Scholar] [CrossRef]
- Zibin, Z.; Yilei, Z.; Lyu, M.R. Distributed QoS Evaluation for Real-World Web Services. In Proceedings of the Web Services (ICWS), 2010 IEEE International Conference on Web Services, Miami, FL, USA, 5–10 July 2010; pp. 83–90. [Google Scholar]
- Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. Res. Methods Report. 2009, 339, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Whit, I.R. Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J. Stat. Softw. 2011, 45, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.X.; Liu, Y.; Wang, J.Y.; Zhu, X.M. Service Composition Based on Niching Particle Swarm Optimization in Service Overlay Networks. Ksii Trans. Internet Inf. Syst. 2012, 6, 1106–1127. [Google Scholar] [CrossRef]
- Liao, J.X.; Liu, Y.; Zhu, X.M.; Xu, T.; Wang, J.Y. Niching Particle Swarm Optimization Algorithm for Service Composition. In Proceedings of the 2011 IEEE Global Telecommunications Conference, Houston, TX, USA, 5–9 December 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Nakagawa, S. A farewell to Bonferroni: The problems of low statistical power and publication bias. Behav. Ecol. 2004, 15, 1044–1045. [Google Scholar] [CrossRef]
- Cabin, R.; Mitchell, R. To Bonferroni or not to Bonferroni: When and how are the questions. Bull. Ecol. Soc. Am. 2000, 81, 246–248. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar] [CrossRef]
Dataset Name | QoS Parameters | No. of Service Providers | No. of Presented Services |
---|---|---|---|
Jula et al.’s dataset | Service time Service cost | 339 | 5540 |
NumMinRoot (Population Size) | ||||||||
---|---|---|---|---|---|---|---|---|
8 | 125 | 500 | 0.33 × MDV | 70 | 40 | 2 | 0.25 | 5 |
Algorithm | P1 | P2 | P3 | P4 | P5 | |
---|---|---|---|---|---|---|
Niching PSO | Best | 57.80 | 121.21 | 197.59 | 257.70 | 324.07 |
Rank | 5 | 5 | 5 | 5 | 5 | |
ICA | Best | 45.43 | 103.06 | 147.21 | 203.61 | 253.28 |
Rank | 4 | 4 | 4 | 4 | 4 | |
ICACRO-C | Best | 34.53 | 69.63 | 103.018 | 147.96 | 190.64 |
Rank | 2 | 2 | 2 | 2 | 2 | |
ICACRO-I | Best | 35.23 | 73.78 | 107.54 | 155.3 | 197.45 |
Rank | 3 | 3 | 3 | 3 | 3 | |
SRS | Best | 32.29 | 64.42 | 96.98 | 138.31 | 180.8 |
Rank | 1 | 1 | 1 | 1 | 1 |
No. | Problem Size | Source of Variation | Sum of Squares (SS) | df | Mean Square (MS) | F | p-Value | F Criteria |
---|---|---|---|---|---|---|---|---|
100 | Between Groups | 574,774.3 | 4 | 143,693.6 | 10,012.93 | 0.000000 | 2.373117 | |
Within Groups | 107,559.2 | 7495 | 14.3508 | |||||
200 | Between Groups | 2,223,419 | 4 | 555,854.7 | 4834.082 | 0.000000 | 2.373117 | |
Within Groups | 861,824.6 | 7495 | 114.9866 | |||||
300 | Between Groups | 7,633,617 | 4 | 1,908,404 | 8786.23 | 0.000000 | 2.373117 | |
Within Groups | 1,627,944 | 7495 | 217.204 | |||||
400 | Between Groups | 9,107,241 | 4 | 2,276,810 | 6395.4 | 0.000000 | 2.373117 | |
Within Groups | 2,668,276 | 7495 | 356.0075 | |||||
500 | Between Groups | 13,354,953 | 4 | 3,338,738 | 6372.445 | 0.000000 | 2.373117 | |
Within Groups | 3,926,883 | 7495 | 523.9336 |
No. | Problem Size | Groups | N | Mean | Std | p-Value with SRS |
---|---|---|---|---|---|---|
100 | Niching PSO | 1500 | 58.73 | 0.89 | 0 ** | |
ICA | 1500 | 46.21 | 1.76 | 0 ** | ||
ICACRO-C | 1500 | 36.48 | 3.54 | 0.000984 ** | ||
ICACRO-I | 1500 | 37.35 | 3.69 | ** | ||
SRS | 1500 | 35.86 | 6.45 | -- | ||
200 | Niching PSO | 1500 | 122.2 | 1.2 | 0 ** | |
ICA | 1500 | 104.87 | 4.43 | 0 ** | ||
ICACRO-C | 1500 | 79.76 | 11.61 | 0.001799 ** | ||
ICACRO-I | 1500 | 83.35 | 10.74 | ** | ||
SRS | 1500 | 78.07 | 17.43 | -- | ||
300 | Niching PSO | 1500 | 199.31 | 1.32 | 0 ** | |
ICA | 1500 | 150.01 | 6.8 | 0 ** | ||
ICACRO-C | 1500 | 117.73 | 16.07 | 0.002513 ** | ||
ICACRO-I | 1500 | 120.59 | 15.38 | ** | ||
SRS | 1500 | 115.51 | 23.31 | -- | ||
400 | Niching PSO | 1500 | 258.41 | 0.87 | 0 ** | |
ICA | 1500 | 208.22 | 8.67 | 0 ** | ||
ICACRO-C | 1500 | 169.87 | 21.27 | ** | ||
ICACRO-I | 1500 | 176.23 | 20.20 | ** | ||
SRS | 1500 | 165.12 | 29.04 | -- | ||
500 | Niching PSO | 1500 | 324.71 | 1.07 | 0 ** | |
ICA | 1500 | 259.33 | 11.39 | 0 ** | ||
ICACRO-C | 1500 | 217.19 | 25.08 | ** | ||
ICACRO-I | 1500 | 221.51 | 24.09 | ** | ||
SRS | 1500 | 212.75 | 35.76 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseri, N.K.; Sundararajan, E.; Ayob, M. Smart Root Search (SRS) in Solving Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC) Problems. Symmetry 2023, 15, 272. https://doi.org/10.3390/sym15020272
Naseri NK, Sundararajan E, Ayob M. Smart Root Search (SRS) in Solving Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC) Problems. Symmetry. 2023; 15(2):272. https://doi.org/10.3390/sym15020272
Chicago/Turabian StyleNaseri, Narjes Khatoon, Elankovan Sundararajan, and Masri Ayob. 2023. "Smart Root Search (SRS) in Solving Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC) Problems" Symmetry 15, no. 2: 272. https://doi.org/10.3390/sym15020272
APA StyleNaseri, N. K., Sundararajan, E., & Ayob, M. (2023). Smart Root Search (SRS) in Solving Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC) Problems. Symmetry, 15(2), 272. https://doi.org/10.3390/sym15020272