The Astroparticle Detectors Array—An Educational Project in Cosmic Ray Physics
Abstract
:1. Introduction
2. ADA Network Array
2.1. Detection System in Brief
2.2. ADA Sites
3. Results
3.1. Symmetry between Meteorological and Cosmic Data in ADA Detectors
- For the first mechanism, we recall Blackett 1938 [4]. In summer, air temperature increases; thus, the mass of the air expands higher (high pressure), and it follows that first interactions between primary particles and air atoms occur at a greater elevation. Since muons are produced at higher altitudes, they have to cross more air, and those with lower energy are absorbed earlier, i.e., their probability of decaying before reaching the ground increases; therefore, the total intensity at sea level is definitely lower during the warmer months. We nickname this the “Blackett effect”.
- The second mechanism involves pion particles, which are the major progenitors of muons; when the air temperature increases, air molecules tend to stay further apart, and the overall density decrease. At high altitudes with higher temperatures, pions have a low probability of encountering matter along their path and tend to decay spontaneously (into muons) rather than interacting with oxygen or nitrogen molecules. Therefore, for this process, the production of muons is higher during the summer months; we can call this the “pion effect” (Duperieb, 1951) [5].
3.2. Solar Magnetic Activity and Its Effect on ADA
3.2.1. ADA and the Last Solar Cycle
3.2.2. First Clues of Solar Cycle 25 in AMD Detectors
3.3. Eight Years of Cosmic Rays Gathered by an ADA Detector
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Adams, S.M.; Kochanek, C.S.; Beacom, J.F.; Vagins, M.R.; Stanek, K.Z. Observing the Next Galactic Supernova 2013. Astrophys. J. 2013, 778, 164. [Google Scholar] [CrossRef] [Green Version]
- Arcani, M.; Guaita, C.; Paganoni, A. VHANESSA expedition. Astropart. Phys. 2014, 53, 100–106. [Google Scholar] [CrossRef]
- Bonolis, L. Walther Bothe and Bruno Rossi: The birth and development of coincidence methods in cosmic-ray physics. Am. J. Phys. 2011, 79, 1133–1150. [Google Scholar] [CrossRef] [Green Version]
- Blackett, P.M.S. On the Instability of the Barytron and the Temperature Effect of Cosmic Rays. Phys. Rev. 1938, 54, 973. [Google Scholar] [CrossRef]
- Duperieb, A. On the positive temperature effect of the upper atmosphere and the process of meson production. J. Atmos. Terr. Phys. 1951, 1, 296–310. [Google Scholar] [CrossRef]
- Wilson, J.G. Cosmic Rays; Wykeham Publications: London, UK, 1976. [Google Scholar]
- Leamon, R.J.; McIntosh, S.W. Deciphering Solar Magnetic Activity: The (Solar) Hale Cycle Terminator of 2021. Front. Astron. Space Sci. 2022, 9, 886670. [Google Scholar] [CrossRef]
- Tomassetti, N.; Orcinha, M.; Barão, F.; Bertucci, B. Evidence for a Time Lag in Solar Modulation of Galactic Cosmic Rays. Astrophys. J. Lett. 2017, 849, L32. [Google Scholar] [CrossRef] [Green Version]
- Federal Aviation Administration. Heliocentric Potential Data are Based on Ground Level Neutron Measurements Provided by Dr. Eduard Vashenyuk of the Apatity Cosmic Ray Station of the Polar Geophysical Institute, Russia. Available online: https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/heliocentric (accessed on 7 December 2022).
- SILSO. World Data Center—Sunspot Number and Long-Term Solar Observations, Royal Observatory of Belgium, On-Line Sunspot Number catalogue. 2020–2022. Available online: http://www.sidc.be/silso/ (accessed on 7 December 2022).
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G. Wavelet Software. Available online: http://atoc.colorado.edu/research/wavelets/ (accessed on 7 December 2022).
- Augusto, C.R.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H.; Fauth, A.C.; Kemp, E.; Manganote, E.J.; de Oliveira, M.L.; Miranda, P.; et al. Variations of the muon flux at sea level associated with interplanetary ICMEs and corotating interaction regions. Astrophys. J. 2012, 759, 143. [Google Scholar] [CrossRef] [Green Version]
- Bazilevskaya, G.A.; Kalinin, M.S.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; Svirzhevsky, N.S. Correlation of the quasi-biennial oscillations in galactic cosmic rays and in the solar activity indices. InJournal Phys. Conf. Ser. 2015, 632, 012050. [Google Scholar] [CrossRef]
- Alania, M.V.; Shatashvili, L.K.H.; Dorman, L.I. A study of the modulation regions causing 27-day cosmic-ray variations. Can. J. Phys. 1968, 46, S970–S972. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, Z.; Ma, Y.; He, Y.; Zuo, X.; He, M. Analysis of the Positive Arctic Oscillation Index Event and Its Influence in the Winter and Spring of 2019/2020. Front. Earth Sci. 2021, 8, 580601. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2020, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Earth a Visualization of Global Weather Conditions Forecast by Supercomputers. Available online: https://earth.nullschool.net/ (accessed on 7 December 2022).
- Merra2, Modern Era Retrospective analysis for Research and Application, National Aeronautics and Space Administration Goddard Space Flight Center. Available online: https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html (accessed on 6 December 2022).
Detector ID (Site) | Model | Corr. Coefficient (r) | R-Squared (%) | p-Value (ANOVA) |
---|---|---|---|---|
02 (Venegono I.) | S-curve | −0.57 | 33.27 | 0.0004 |
03 (Cariati) | Linear | −0.44 | 19.4 | 0.0091 |
09 (Faenza) | Linear | −0.43 | 18.4 | 0.0114 |
AMD Detector ID (Site) | Model | Corr. Coefficient (r) | R-Squared (%) | p-Value (ANOVA) |
---|---|---|---|---|
02 (Venegono I.) | Linear | −0.55 | 31.26 | 0.0929 * |
03 (Cariati) | Linear | −0.70 | 49.47 | 0.0233 |
08 (Marghera) | Linear | −0.66 | 43.13 | 0.0769 * |
09 (Faenza) | Linear | −0.50 | 25.60 | 0.1357 * |
12 (Biella) | S-curve ** | −0.80 | 64.56 | 0.0051 |
19 (Mersch) | Linear | −0.78 | 61.65 | 0.0071 |
23 (M.te Cimone) | Linear | −0.77 | 59.52 | 0.0090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcani, M.; Conte, E.; Monte, O.D.; Frassati, A.; Grana, A.; Guaita, C.; Liguori, D.; Nemolato, A.R.M.; Pigato, D.; Rubino, E. The Astroparticle Detectors Array—An Educational Project in Cosmic Ray Physics. Symmetry 2023, 15, 294. https://doi.org/10.3390/sym15020294
Arcani M, Conte E, Monte OD, Frassati A, Grana A, Guaita C, Liguori D, Nemolato ARM, Pigato D, Rubino E. The Astroparticle Detectors Array—An Educational Project in Cosmic Ray Physics. Symmetry. 2023; 15(2):294. https://doi.org/10.3390/sym15020294
Chicago/Turabian StyleArcani, Marco, Elio Conte, Omar Del Monte, Alessandra Frassati, Andrea Grana, Cesare Guaita, Domenico Liguori, Altea Renata Maria Nemolato, Daniele Pigato, and Elia Rubino. 2023. "The Astroparticle Detectors Array—An Educational Project in Cosmic Ray Physics" Symmetry 15, no. 2: 294. https://doi.org/10.3390/sym15020294
APA StyleArcani, M., Conte, E., Monte, O. D., Frassati, A., Grana, A., Guaita, C., Liguori, D., Nemolato, A. R. M., Pigato, D., & Rubino, E. (2023). The Astroparticle Detectors Array—An Educational Project in Cosmic Ray Physics. Symmetry, 15(2), 294. https://doi.org/10.3390/sym15020294