Stellar β− Decay Rates for 63Co and 63Ni by the Projected Shell Model
Abstract
:1. Introduction
2. Theoretical Framework
3. Results and Discussions
3.1. Level Scheme
3.2. Decay from Co to Ni
3.3. Decay from Ni to Cu
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avignone, F.T.; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Engel, J.; Yao, J.M. Quenching of nuclear matrix elements for 0νββ decay by chiral two-body currents. Phys. Rev. C 2018, 98, 031301(R). [Google Scholar] [CrossRef] [Green Version]
- Yao, J.M.; Engel, J.; Wang, L.J.; Jiao, C.F.; Hergert, H. Generator-coordinate reference states for spectra and 0νββ decay in the in-medium similarity renormalization group. Phys. Rev. C 2018, 98, 054311. [Google Scholar] [CrossRef] [Green Version]
- Fijałkowska, A.; Karny, M.; Rykaczewski, K.P.; Rasco, B.C.; Grzywacz, R.; Gross, C.J.; Wolińska-Cichocka, M.; Goetz, K.C.; Stracener, D.W.; Bielewski, W.; et al. Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν¯e flux calculation. Phys. Rev. Lett. 2017, 119, 052503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak-interaction rates for sd-shell nuclei. I. Nuclear matrix element systematics with application to 26Al and selected nuclei of imprtance to the supernova problem. Astrophys. J. Suppl. Ser. 1980, 42, 447–473. [Google Scholar] [CrossRef] [Green Version]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak-interaction rates for intermediate-mass nuclei. II. Astrophys. J. 1982, 252, 715. [Google Scholar] [CrossRef]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak-interaction rates for intermediate-mass nuclei. III. Astrophys. J. Suppl. Ser. 1982, 48, 279. [Google Scholar] [CrossRef]
- Fuller, G.M.; Fowler, W.A.; Newman, M.J. Stellar weak-interaction rates for intermediate-mass nuclei. IV. Astrophys. J. 1985, 293, 1. [Google Scholar] [CrossRef] [Green Version]
- Langanke, K.; Martínez-Pinedo, G. Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 2003, 75, 819–862. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pinedo, G.; Lam, Y.H.; Langanke, K.; Zegers, R.G.T.; Sullivan, C. Astrophysical weak-interaction rates for selected A = 20 and A = 24 nuclei. Phys. Rev. C 2014, 89, 045806. [Google Scholar] [CrossRef]
- Langanke, K.; Martínez-Pinedo, G.; Zegers, R.G.T. Electron capture in stars. Rep. Prog. Phys. 2021, 84, 066301. [Google Scholar] [CrossRef] [PubMed]
- Janka, H.T.; Langanke, K.; Marek, A.; Martínez-Pinedo, G.; Müller, B. Theory of core-collapse supernovae. Phys. Rep. 2007, 442, 38–74. [Google Scholar] [CrossRef] [Green Version]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–193. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Schatz, H.; Aprahamian, A.; Görres, J.; Wiescher, M.; Rauscher, T.; Rembges, J.; Thielemann, F.K.; Pfeiffer, B.; Möller, P.; Kratz, K.L.; et al. rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 1998, 294, 167–263. [Google Scholar] [CrossRef]
- Schatz, H.; Gupta, S.; Möller, P.; Beard, M.; Brown, E.F.; Deibel, A.T.; Gasques, L.R.; Hix, W.R.; Keek, L.; Lau, R.; et al. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts. Nature 2014, 505, 62. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Tan, L.; Li, Z.; Misch, G.W.; Sun, Y. Urca Cooling in Neutron Star Crusts and Oceans: Effects of Nuclear Excitations. Phys. Rev. Lett. 2021, 127, 172702. [Google Scholar] [CrossRef] [PubMed]
- Langanke, K.; Martínez-Pinedo, G. Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A = 45–65 in supernovae environments. Nucl. Phys. A 2000, 673, 481–508. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Q.; Caurier, E.; Cuenca-García, J.J.; Langanke, K.; Martínez-Pinedo, G.; Sieja, K. Shell-model half-lives including first-forbidden contributions for r-process waiting-point nuclei. Phys. Rev. C 2013, 87, 025803. [Google Scholar] [CrossRef]
- Fujita, Y.; Rubio, B.; Gelletly, W. Spin–isospin excitations probed by strong, weak and electro-magnetic interactions. Prog. Part. Nucl. Phys. 2011, 66, 549–606. [Google Scholar] [CrossRef]
- Zegers, R.G.T.; Akimune, H.; Austin, S.M.; Bazin, D.; Berg, A.M.d.; Berg, G.P.A.; Brown, B.A.; Brown, J.; Cole, A.L.; Daito, I.; et al. The (t,3He) and (3He, t) reactions as probes of Gamow-Teller strength. Phys. Rev. C 2006, 74, 024309. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.L.; Anderson, T.S.; Zegers, R.G.T.; Austin, S.M.; Brown, B.A.; Valdez, L.; Gupta, S.; Hitt, G.W.; Fawwaz, O. Gamow-Teller strengths and electron-capture rates for pf-shell nuclei of relevance for late stellar evolution. Phys. Rev. C 2012, 86, 015809. [Google Scholar] [CrossRef] [Green Version]
- Misch, G.W.; Sprouse, T.M.; Mumpower, M.R.; Couture, A.J.; Fryer, C.L.; Meyer, B.S.; Sun, Y. Sensitivity of Neutron-Rich Nuclear Isomer Behavior to Uncertainties in Direct Transitions. Symmetry 2021, 13, 1831. [Google Scholar] [CrossRef]
- Jian, H.; Gao, Y.; Dai, F.; Liu, J.; Xu, X.; Yuan, C.; Kaneko, K.; Sun, Y.; Liang, P.; Shi, G.; et al. β-Delayed γ Emissions of 26P and Its Mirror Asymmetry. Symmetry 2021, 13, 2278. [Google Scholar] [CrossRef]
- Oda, T.; Hino, M.; Muto, K.; Takahara, M.; Sato, K. Rate Tables for the Weak Processes of sd-Shell Nuclei in Stellar Matter. At. Data Nucl. Data Tables 1994, 56, 231. [Google Scholar] [CrossRef]
- Misch, G.W.; Fuller, G.M.; Brown, B.A. Modification of the Brink-Axel hypothesis for high-temperature nuclear weak interactions. Phys. Rev. C 2014, 90, 065808. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Langanke, K.; Martínez-Pinedo, G.; Nowacki, F. Shell-model calculations of stellar weak interaction rates. I. Gamow-Teller distributions and spectra of nuclei in the mass range A = 45–65. Nucl. Phys. A 1999, 653, 439. [Google Scholar] [CrossRef] [Green Version]
- Langanke, K.; Martínez-Pinedo, G. Rate tables for the weak processes of pf-shell nuclei in stellar environments. At. Data Nucl. Data Tables 2001, 79, 1–46. [Google Scholar] [CrossRef]
- Langanke, K.; Kolbe, E.; Dean, D.J. Unblocking of the Gamow-Teller strength in stellar electron capture on neutron-rich germanium isotopes. Phys. Rev. C 2001, 63, 032801(R). [Google Scholar] [CrossRef] [Green Version]
- Langanke, K.; Martínez-Pinedo, G.; Sampaio, J.M.; Dean, D.J.; Hix, W.R.; Messer, O.E.B.; Mezzacappa, A.; Liebendörfer, M.; Janka, H.T.; Rampp, M. Electron Capture Rates on Nuclei and Implications for Stellar Core Collapse. Phys. Rev. Lett. 2003, 90, 241102. [Google Scholar] [CrossRef]
- Engel, J.; Bender, M.; Dobaczewski, J.; Nazarewicz, W.; Surman, R. β decay rates of r-process waiting-point nuclei in a self-consistent approach. Phys. Rev. C 1999, 60, 014302. [Google Scholar] [CrossRef] [Green Version]
- Paar, N.; Colò, G.; Khan, E.; Vretenar, D. Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals. Phys. Rev. C 2009, 80, 055801. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.L.; Zhang, H.Q.; Sagawa, H.; Zhang, X.Z.; Colò, G.; Xu, F.R. Effect of the Tensor Force on the Charge Exchange Spin-Dipole Excitations of 208Pb. Phys. Rev. Lett. 2010, 105, 072501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhioev, A.A.; Vdovin, A.I.; Ponomarev, V.Y.; Wambach, J.; Langanke, K.; Martínez-Pinedo, G. Gamow-teller strength distributions at finite temperatures and electron capture in stellar environments. Phys. Rev. C 2010, 81, 015804. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.F.; Niu, Z.M.; Colò, G.; Vigezzi, E. Particle-Vibration Coupling Effect on the β Decay of Magic Nuclei. Phys. Rev. Lett. 2015, 114, 142501. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.L.; Brown, B.A.; Suzuki, T. β decay properties for neutron-rich Kr-Tc isotopes from deformed pn-quasiparticle random-phase approximation calculations with realistic forces. Phys. Rev. C 2013, 88, 024314. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.M.; Niu, Y.F.; Liang, H.Z.; Long, W.H.; Nikšić, T.; Vretenar, D.; Meng, J. β-decay half-lives of neutron-rich nuclei and matter flow in the r-process. Phys. Lett. B 2013, 723, 172. [Google Scholar] [CrossRef] [Green Version]
- Sarriguren, P. Stellar electron-capture rates in p f-shell nuclei from quasiparticle random-phase approximation calculations. Phys. Rev. C 2013, 87, 045801. [Google Scholar] [CrossRef] [Green Version]
- Robin, C.; Litvinova, E. Time-reversed particle-vibration loops and nuclear gamow-teller response. Phys. Rev. Lett. 2019, 123, 202501. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays. Phys. Rep. 2019, 797, 1. [Google Scholar] [CrossRef]
- Hara, K.; Sun, Y. Projected shell model and high-spin spectroscopy. Int. J. Mod. Phys. E 1995, 4, 637–785. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, D.H. High spin spectroscopy with the projected shell model. Phys. Rep. 1996, 264, 375. [Google Scholar] [CrossRef]
- Gao, Z.C.; Sun, Y.; Chen, Y.S. Shell model method for Gamow-Teller transitions in heavy, deformed nuclei. Phys. Rev. C 2006, 74, 054303. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Sun, Y.; Ghorui, S.K. Shell-model method for Gamow-Teller transitions in heavy deformed odd-mass nuclei. Phys. Rev. C 2018, 97, 044302. [Google Scholar] [CrossRef]
- Tan, L.; Liu, Y.X.; Wang, L.J.; Li, Z.; Sun, Y. A novel method for stellar electron-capture rates of excited nuclear states. Phys. Lett. B 2020, 805, 135432. [Google Scholar] [CrossRef]
- Wang, L.J.; Tan, L.; Li, Z.; Gao, B.; Sun, Y. Description of 93Nb stellar electron-capture rates by the projected shell model. Phys. Rev. C 2021, 104, 064323. [Google Scholar] [CrossRef]
- Lv, C.J.; Sun, Y.; Fujita, Y.; Fujita, H.; Wang, L.J.; Gao, Z.C. Effect of nuclear deformation on the observation of a low-energy super-Gamow-Teller state. Phys. Rev. C 2022, 105, 054308. [Google Scholar] [CrossRef]
- Wang, L.J.; Chen, F.Q.; Mizusaki, T.; Oi, M.; Sun, Y. Toward extremes of angular momentum: Application of the Pfaffian algorithm in realistic calculations. Phys. Rev. C 2014, 90, 011303(R). [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Sun, Y.; Mizusaki, T.; Oi, M.; Ghorui, S.K. Reduction of collectivity at very high spins in 134Nd: Expanding the projected-shell-model basis up to 10-quasiparticle states. Phys. Rev. C 2016, 93, 034322. [Google Scholar] [CrossRef]
- Wang, L.J.; Dong, J.; Chen, F.Q.; Sun, Y. Projected shell model analysis of structural evolution and chaoticity in fast-rotating nuclei. J. Phys. G Nucl. Part. Phys. 2019, 46, 105102. [Google Scholar] [CrossRef]
- Wang, L.J.; Chen, F.Q.; Sun, Y. Basis-dependent measures and analysis uncertainties in nuclear chaoticity. Phys. Lett. B 2020, 808, 135676. [Google Scholar] [CrossRef]
- Chen, Z.R.; Wang, L.J. Pfaffian formulation for matrix elements of three-body operators in multiple quasiparticle configurations. Phys. Rev. C 2022, 105, 034342. [Google Scholar] [CrossRef]
- Wang, B.L.; Gao, F.; Wang, L.J.; Sun, Y. Effective and efficient algorithm for the Wigner rotation matrix at high angular momenta. Phys. Rev. C 2022, 106, 054320. [Google Scholar] [CrossRef]
- Yokoyama, R.; Ideguchi, E.; Simpson, G.S.; Tanaka, M.; Sun, Y.; Lv, C.J.; Liu, Y.X.; Wang, L.J.; Nishimura, S.; Doornenbal, P.; et al. Three-quasiparticle isomers in odd-even 159,161Pm: Calling for modified spin-orbit interaction for the neutron-rich region. Phys. Rev. C 2021, 104, L021303. [Google Scholar] [CrossRef]
- Heger, A.; Langanke, K.; Martínez-Pinedo, G.; Woosley, S.E. Presupernova Collapse Models with Improved Weak-Interaction Rates. Phys. Rev. Lett. 2001, 86, 1678–1681. [Google Scholar] [CrossRef] [Green Version]
- Heger, A.; Woosley, S.E.; Martínez-Pinedo, G.; Langanke, K. Presupernova Evolution with Improved Rates for Weak Interactions. Astrophys. J. 2001, 560, 307. [Google Scholar] [CrossRef] [Green Version]
- Misch, G.W.; Ghorui, S.K.; Banerjee, P.; Sun, Y.; Mumpower, M.R. Astromers: Nuclear Isomers in Astrophysics. Astrophys. J. Suppl. Ser. 2020, 252, 2. [Google Scholar] [CrossRef]
- Haxton, W.C.; Henley, E.M. Symmetries and Fundamental Interactions in Nuclei; World Scientific: Singapore, 1995. [Google Scholar]
- Brown, B.; Wildenthal, B. Experimental and theoretical Gamow-Teller beta-decay observables for the sd-shell nuclei. At. Data Nucl. Data Tables 1985, 33, 347–404. [Google Scholar] [CrossRef]
- Martínez-Pinedo, G.; Poves, A.; Caurier, E.; Zuker, A.P. Effective gA in the pf shell. Phys. Rev. C 1996, 53, R2602–R2605. [Google Scholar] [CrossRef] [Green Version]
- Märkisch, B.; Mest, H.; Saul, H.; Wang, X.; Abele, H.; Dubbers, D.; Klopf, M.; Petoukhov, A.; Roick, C.; Soldner, T.; et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Phys. Rev. Lett. 2019, 122, 242501. [Google Scholar] [CrossRef]
- Nilsson, S.G.; Tsang, C.F.; Sobiczewski, A.; Szymański, Z.; Wycech, S.; Gustafson, C.; Lamm, I.; Möller, P.; Nilsson, B. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 1969, 131, 1–66. [Google Scholar] [CrossRef] [Green Version]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum; World Scientific: Singapore, 1988. [Google Scholar]
- Available online: https://www.nndc.bnl.gov (accessed on 9 January 2023).
- Möller, P.; Sierk, A.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 2016, 109–110, 1–204. [Google Scholar] [CrossRef] [Green Version]
- Albers, M.; Zhu, S.; Janssens, R.V.F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P.F.; Carpenter, M.P.; Chiara, C.J.; et al. Single-particle and collective excitations in 63Ni. Phys. Rev. C 2013, 88, 054314. [Google Scholar] [CrossRef] [Green Version]
- Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; et al. Neutron Capture Cross Section of Unstable 63Ni: Implications for Stellar Nucleosynthesis. Phys. Rev. Lett. 2013, 110, 022501. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.-R.; Wang, L.-J. Stellar β− Decay Rates for 63Co and 63Ni by the Projected Shell Model. Symmetry 2023, 15, 315. https://doi.org/10.3390/sym15020315
Chen Z-R, Wang L-J. Stellar β− Decay Rates for 63Co and 63Ni by the Projected Shell Model. Symmetry. 2023; 15(2):315. https://doi.org/10.3390/sym15020315
Chicago/Turabian StyleChen, Zi-Rui, and Long-Jun Wang. 2023. "Stellar β− Decay Rates for 63Co and 63Ni by the Projected Shell Model" Symmetry 15, no. 2: 315. https://doi.org/10.3390/sym15020315
APA StyleChen, Z. -R., & Wang, L. -J. (2023). Stellar β− Decay Rates for 63Co and 63Ni by the Projected Shell Model. Symmetry, 15(2), 315. https://doi.org/10.3390/sym15020315