A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study
Abstract
:1. Introduction
- A TFSSA is proposed for feature selection problems, and it is utilized to solve a COVID-19 case study.
- An improved Tent chaos strategy, Lévy flights (LFs) mechanism, and Self-adaptive hyper-parameters are integrated into TFSSA to improve SSA’s exploratory behavior and perform well in the CEC2020 benchmark function.
- A comprehensive comparison of TFSSA and nine different algorithms for feature selection problems is undertaken in nine aspects.
- The proposed TFSSA’s improved searching capabilities are tested on 21 well-known feature selection datasets with excellent results.
2. SSA
2.1. Background of SSA
2.2. Advantages of SSA from Other EA
2.3. Rule Design
- (1)
- Producers (leaders) have access to plentiful food sources and are responsible for ensuring that all scroungers (followers) have access to foraging sites.
- (2)
- Some sparrows will be chosen as patrollers (guards). When patrollers come across a predator, they will sound an alarm. When the safety threshold is exceeded, the producer must direct the scroungers (followers) to other safe regions.
- (3)
- Sparrows that can discover a better food source earn more energy and are promoted to producers (leaders). At the same time, hungry scroungers (followers) are more likely to fly elsewhere to forage to gain more energy, and the producer-to-forager ratio remains steady.
- (4)
- Scroungers (followers) hunt for food after the finest producers (leaders). Simultaneously, certain predators may observe producers (leaders) and steal food.
- (5)
- When threatened, sparrows near the flock’s edge moved swiftly to a safe region, while sparrows in the center of the flock moved randomly to approach other sparrows in the safe area.
2.4. Algorithm Design
Algorithm 1 SSA |
Input: |
The number of sparrows(N) |
The number of producers() |
The number of guards() |
The warning value() |
The maximum iterations() |
Output: |
The best position() |
The best solution() |
1: t ← 0; |
2: while (t < T_max) do |
3: Calculate and update the , , and ; |
4: for each leaders do |
5: The location of leaders(producers) is updated using Equation (3); |
6: end for |
7: for each followers do |
8: The location of followers(scroungers) is updated using Equation (4); |
9: end for |
10: for each patrollers do |
11: The location of patrollers is updated using Equation (5); |
12: end for |
13: Find the current new location ; // If the new location is better than before, update it. |
14: Rank the ; |
15: t ← t + 1; |
16: end while |
17: return , . |
3. The Proposed Algorithm
3.1. Initialized Population
3.2. LF Mechanism
3.3. Self-Adaptive Hyper-Parameters
3.4. Optimal Individual Mutation by -Tent Chaos
Algorithm 2 TFSSA |
Input: |
The number of sparrows(N) |
The number of producers() |
The number of guards() |
The safety threshold() |
The warning value() |
The maximum iterations() |
Output: |
The best position so far() |
The best solution so far() |
1: Initialize a flock of sparrows’ location X // Pretreatment by Equations (8) and (9). |
2: t ← 0; |
3: while (t < T_max) do |
4: Rank the fitness vaule using Equation (2); |
Find the and ; |
Update the ← a random value in [0, 1], and calculate the using Equation (17). |
5: for each leaders do |
6: The location of leaders(producers) is updated using Equation (15); // The original producer position is updated from Equation (3) to Equation (15). |
7: end for |
8: for each followers do |
9: The location of followers(scroungers) is updated using Equation (4); |
10: end for |
11: for each patrollers do |
12: The location of patrollers is updated using Equation (5); // The is updated using Equation (16). |
13: end for |
14: Update and . |
15: for do |
16: if ( > ) then |
17: The is updated using Equation (12). // indicates the inertia weighting factor. |
18: else |
19: The is mutated using Equation (13). |
20: end if |
21: end for |
22: Update and . |
23: Calculate the r using Equation (17). |
24: if ( < r) then |
25: ← ; // The is mutated using Equation (18). |
26: end if |
27: Rearrange all of the population’s in ascending order. |
28: ← ; // Update . |
29: ← ; // Update . |
30: t ← t + 1; |
31: end while |
32: return , . |
3.5. Computational Complexity Analysis
3.5.1. Time Complexity Analysis
3.5.2. Space Complexity Analysis
4. TFSSA Applied for FS
4.1. Initialization
4.2. Fitness Evaluation
4.3. Termination
5. Experimental
5.1. Evaluation of TFSSA
5.1.1. Benchmark Functions
5.1.2. Parameter Setting
5.1.3. Statistical Test
5.1.4. Solution Accuracy Analysis
5.1.5. Algorithm Stability Analysis
5.1.6. Convergence Rate Analysis
5.1.7. Sensitivity Analysis
5.1.8. Runtime Analysis
5.2. Performance of Proposed Model
5.2.1. Description of Data
5.2.2. Parameter Configuration
- Genetic Algorithm (GA) [96].
- Dragonfly Algorithm (DA) [97].
- Ant Lion Optimizer (ALO) [98].
- Sparrow Search Algorithm (SSA) [70].
- Sine Cosine Algorithm (SCA) [99].
- Particle Swarm Optimizer (PSO) [89].
- binary Butterfly Optimization Algorithm (bBOA) [100].
- Brain Storm Optimizer (BSO) [101].
- Improved Sparrow Search Algorithm (ISSA) [102].
- Grey Wolf Optimizer (GWO) [103].
5.2.3. Evaluation Criteria
- Classification average accuracy (AvgPerf) is a metric that indicates how accurate the classifier is given the provided feature set. Equation (20) can be used to receive the classification average accuracy.
- Statistical Best is the optimistic fitness value (the minimum value) obtained after each feature selection method runs M times, as shown in Equation (21).
- Statistical Mean is the average value of the solution obtained by running under the condition of M times, as shown in Equation (23).
- Statistical Std is a representation of the variation in the obtained minimum (best) solutions for M different runs of a stochastic optimizer. Std is a stability and robustness metric for optimizers; if Std is small, the optimizer always converges to the same solution; on the contrary, the optimizer produces numerous random outcomes, as shown in Equation (24).
- Selection average size (AVGSelectionSZ) represents the average amount of features selected, as shown in Equation (25).
- Wilcoxon rank sum test is a nonparametric statistical test designed to see if the results of a proposed new technique are statistically different from those of other comparative techniques. The rank sum test produces a p-value parameter that compares the significance level of the two methods. The p-value is less than 0.05, which indicates that the two methods are significantly different [104,105].
5.2.4. Comparison of TFSSA and Other FS Methods
6. Real-World Dataset Instances
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Too, J.; Mirjalili, S. A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study. Knowl.-Based Syst. 2021, 212, 106553. [Google Scholar] [CrossRef]
- Frawley, W.J.; Piatetsky-Shapiro, G.; Matheus, C.J. Knowledge discovery in databases: An overview. AI Mag. 1992, 13, 57. [Google Scholar]
- Cios, K.J.; Pedrycz, W.; Swiniarski, R.W. Data mining and knowledge discovery. In Data Mining Methods for Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 1998; pp. 1–26. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data Anal. 2016, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Alasadi, S.A.; Bhaya, W.S. Review of data preprocessing techniques in data mining. J. Eng. Appl. Sci. 2017, 12, 4102–4107. [Google Scholar]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Kamiran, F.; Calders, T. Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 2012, 33, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Luengo, J.; García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. Big Data Preprocessing; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Shen, C.; Zhang, K. Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex Intell. Syst. 2021, 8, 2769–2789. [Google Scholar] [CrossRef]
- Fu, W.; Wang, K.; Tan, J.; Zhang, K. A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting. Energy Convers. Manag. 2020, 205, 112461. [Google Scholar] [CrossRef]
- Di Mauro, M.; Galatro, G.; Fortino, G.; Liotta, A. Supervised feature selection techniques in network intrusion detection: A critical review. Eng. Appl. Artif. Intell. 2021, 101, 104216. [Google Scholar] [CrossRef]
- Kashef, S.; Nezamabadi-pour, H.; Nikpour, B. Multilabel feature selection: A comprehensive review and guiding experiments. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1240. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dyn. Nat. Soc. 2020, 2020, 4706576. [Google Scholar] [CrossRef]
- Lee, C.Y.; Hung, C.H. Feature ranking and differential evolution for feature selection in brushless DC motor fault diagnosis. Symmetry 2021, 13, 1291. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Wang, K.; Sun, Y. A dual opposition-based learning for differential evolution with protective mechanism for engineering optimization problems. Appl. Soft Comput. 2021, 113, 107942. [Google Scholar] [CrossRef]
- Tsamardinos, I.; Charonyktakis, P.; Papoutsoglou, G.; Borboudakis, G.; Lakiotaki, K.; Zenklusen, J.C.; Juhl, H.; Chatzaki, E.; Lagani, V. Just Add Data: Automated predictive modeling for knowledge discovery and feature selection. NPJ Precis. Oncol. 2022, 6, 38. [Google Scholar] [CrossRef]
- Song, Y.; Wei, L.; Yang, Q.; Wu, J.; Xing, L.; Chen, Y. RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem. Swarm Evol. Comput. 2023, 77, 101236. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Zhang, J.; Lin, Y.; Jiang, M.; Li, S.; Tang, Y.; Tan, K.C. Multi-label Feature Selection via Global Relevance and Redundancy Optimization. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 7–15 January 2020; pp. 2512–2518. [Google Scholar]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Appl. Soft Comput. 2014, 18, 261–276. [Google Scholar]
- Diao, R.; Shen, Q. Nature inspired feature selection meta-heuristics. Artif. Intell. Rev. 2015, 44, 311–340. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, S.B. Sequential random k-nearest neighbor feature selection for high-dimensional data. Expert Syst. Appl. 2015, 42, 2336–2342. [Google Scholar] [CrossRef]
- Oh, I.S.; Lee, J.S.; Moon, B.R. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1424–1437. [Google Scholar] [PubMed] [Green Version]
- Du, G.; Zhang, J.; Luo, Z.; Ma, F.; Ma, L.; Li, S. Joint imbalanced classification and feature selection for hospital readmissions. Knowl.-Based Syst. 2020, 200, 106020. [Google Scholar] [CrossRef]
- Zhao, M.; Jha, A.; Liu, Q.; Millis, B.A.; Mahadevan-Jansen, A.; Lu, L.; Landman, B.A.; Tyska, M.J.; Huo, Y. Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 2021, 71, 102048. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chang, C.H.; Xie, W.; Xie, Z.; Hu, J. Cloud shape classification system based on multi-channel cnn and improved fdm. IEEE Access 2020, 8, 44111–44124. [Google Scholar] [CrossRef]
- Zimbardo, G.; Malara, F.; Perri, S. Energetic particle superdiffusion in solar system plasmas: Which fractional transport equation? Symmetry 2021, 13, 2368. [Google Scholar] [CrossRef]
- Bi, Y.; Xue, B.; Mesejo, P.; Cagnoni, S.; Zhang, M. A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends. arXiv 2022, arXiv:2209.06399. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Y.; Qu, K.; Meng, X.; Hou, Q. Online group streaming feature selection using entropy-based uncertainty measures for fuzzy neighborhood rough sets. Complex Intell. Syst. 2022, 8, 5309–5328. [Google Scholar] [CrossRef]
- Chen, L.Q.; Wang, C.; Song, S.L. Software defect prediction based on nested-stacking and heterogeneous feature selection. Complex Intell. Syst. 2022, 8, 3333–3348. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, M.; Ma, Y. Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set. Complex Intell. Syst. 2021, 8, 287–305. [Google Scholar] [CrossRef]
- Jain, R.; Joseph, T.; Saxena, A.; Gupta, D.; Khanna, A.; Sagar, K.; Ahlawat, A.K. Feature selection algorithm for usability engineering: A nature inspired approach. Complex Intell. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Djemame, S.; Batouche, M.; Oulhadj, H.; Siarry, P. Solving reverse emergence with quantum PSO application to image processing. Soft Comput. 2019, 23, 6921–6935. [Google Scholar] [CrossRef]
- Hosseini, S.; Zade, B.M.H. New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN. Comput. Netw. 2020, 173, 107168. [Google Scholar] [CrossRef]
- Wu, H.; Gao, Y.; Wang, W.; Zhang, Z. A hybrid ant colony algorithm based on multiple strategies for the vehicle routing problem with time windows. Complex Intell. Syst. 2021, 1–18. [Google Scholar] [CrossRef]
- Moghaddasi, S.S.; Faraji, N. A hybrid algorithm based on particle filter and genetic algorithm for target tracking. Expert Syst. Appl. 2020, 147, 113188. [Google Scholar] [CrossRef]
- Hamdi, T.; Ali, J.B.; Di Costanzo, V.; Fnaiech, F.; Moreau, E.; Ginoux, J.M. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern. Biomed. Eng. 2018, 38, 362–372. [Google Scholar] [CrossRef]
- Euchi, J.; Masmoudi, M.; Siarry, P. Home health care routing and scheduling problems: A literature review. 4OR 2022, 20, 351–389. [Google Scholar] [CrossRef]
- Harizan, S.; Kuila, P. Evolutionary algorithms for coverage and connectivity problems in wireless sensor networks: A study. In Design Frameworks for Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 257–280. [Google Scholar]
- Mirjalili, S. Evolutionary algorithms and neural networks. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2019; Volume 780. [Google Scholar]
- Kamath, U.; Compton, J.; Islamaj-Doğan, R.; De Jong, K.A.; Shehu, A. An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Abd-Alsabour, N. A review on evolutionary feature selection. In Proceedings of the 2014 European Modelling Symposium, Pisa, Italy, 21–23 October 2014; pp. 20–26. [Google Scholar]
- Jadhav, S.; He, H.; Jenkins, K. Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft Comput. 2018, 69, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 2014, 12, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, J.; Teng, X.; Xia, W.; Jensen, R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognit. Lett. 2007, 28, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 2015, 20, 606–626. [Google Scholar] [CrossRef] [Green Version]
- Maleki, N.; Zeinali, Y.; Niaki, S.T.A. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst. Appl. 2021, 164, 113981. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Kang, J.; Zhang, X.; Wang, X. A problem-specific non-dominated sorting genetic algorithm for supervised feature selection. Inf. Sci. 2021, 547, 841–859. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, H.; Liang, J.; Słowik, A. Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification. Knowl.-Based Syst. 2021, 227, 107218. [Google Scholar] [CrossRef]
- Song, X.f.; Zhang, Y.; Gong, D.w.; Sun, X.y. Feature selection using bare-bones particle swarm optimization with mutual information. Pattern Recognit. 2021, 112, 107804. [Google Scholar] [CrossRef]
- Song, X.F.; Zhang, Y.; Gong, D.W.; Gao, X.Z. A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans. Cybern. 2021, 52, 9573–9586. [Google Scholar] [CrossRef]
- Li, A.D.; Xue, B.; Zhang, M. Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies. Appl. Soft Comput. 2021, 106, 107302. [Google Scholar] [CrossRef]
- Jangir, P.; Jangir, N. A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power. Eng. Appl. Artif. Intell. 2018, 72, 449–467. [Google Scholar] [CrossRef]
- Sathiyabhama, B.; Kumar, S.U.; Jayanthi, J.; Sathiya, T.; Ilavarasi, A.; Yuvarajan, V.; Gopikrishna, K. A novel feature selection framework based on grey wolf optimizer for mammogram image analysis. Neural Comput. Appl. 2021, 33, 14583–14602. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Huang, S. A Feature Selection Method for Intrusion Detection Based on Parallel Sparrow Search Algorithm. In Proceedings of the 2021 16th International Conference on Computer Science & Education (ICCSE), Lancaster, UK, 17–21 August 2021; pp. 685–690. [Google Scholar]
- Da Silva, R.G.; Ribeiro, M.H.D.M.; Mariani, V.C.; dos Santos Coelho, L. Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos Solitons Fractals 2020, 139, 110027. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chattopadhyay, S.; Singh, P.K.; Ahmadian, A.; Ferrara, M.; Senu, N.; Sarkar, R. MRFGRO: A hybrid meta-heuristic feature selection method for screening COVID-19 using deep features. Sci. Rep. 2021, 11, 24065. [Google Scholar] [CrossRef]
- Shaban, W.M.; Rabie, A.H.; Saleh, A.I.; Abo-Elsoud, M. Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy. Pattern Recognit. 2021, 119, 108110. [Google Scholar] [CrossRef]
- Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and Optimization; Springer: Berlin, Germany, 2019; pp. 57–82. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J. Hydrogen Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl.-Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
- Tuerxun, W.; Chang, X.; Hongyu, G.; Zhijie, J.; Huajian, Z. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm. IEEE Access 2021, 9, 69307–69315. [Google Scholar] [CrossRef]
- Gad, A.G.; Sallam, K.M.; Chakrabortty, R.K.; Ryan, M.J.; Abohany, A.A. An improved binary sparrow search algorithm for feature selection in data classification. Neural Comput. Appl. 2022, 34, 15705–15752. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Wu, R.; Huang, H.; Wei, J.; Ma, C.; Zhu, Y.; Chen, Y.; Fan, Q. An improved sparrow search algorithm based on quantum computations and multi-strategy enhancement. Expert Syst. Appl. 2023, 215, 119421. [Google Scholar] [CrossRef]
- Ma, J.; Hao, Z.; Sun, W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Process. Manag. 2022, 59, 102854. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Yang, H. Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm. Comput. Intell. Neurosci. 2021, 2021, 5556780. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, Z.; Bao, X.; Qian, J.; Wu, B. Gravitational search algorithm based on improved Tent chaos. Control Decis. 2020, 35, 893–900. [Google Scholar]
- Kuang, F.; Xu, W.; Jin, Z. Artificial bee colony algorithm based on self-adaptive Tent chaos search. Control Theory Appl. 2014, 31, 1502–1509. [Google Scholar]
- Shan, L.; Qiang, H.; Li, J.; Wang, Z. Chaotic optimization algorithm based on Tent map. Control Decis. 2005, 20, 179–182. [Google Scholar]
- Yang, X.S. Firefly algorithm, Levy flights and global optimization. In Research and Development in Intelligent Systems XXVI; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–218. [Google Scholar]
- Cao, W.; Tan, Y.; Huang, M.; Luo, Y. Adaptive bacterial foraging optimization based on roulette strategy. In Proceedings of the International Conference on Swarm Intelligence, Barcelona, Spain, 26–28 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 299–311. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005, 2005005, 2005. [Google Scholar]
- Tang, K.; Yáo, X.; Suganthan, P.N.; MacNish, C.; Chen, Y.P.; Chen, C.M.; Yang, Z. Benchmark Functions for the CEC’2008 Special Session and Competition on Large Scale Global Optimization; Nature Inspired Computation and Applications Laboratory, USTC: Beijing, China, 2007; Volume 24, pp. 1–18. [Google Scholar]
- Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization; Nanyang Technological University: Singapore, 2010; Volume 24. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013; Volume 635, p. 490. [Google Scholar]
- Liang, J.; Qu, B.; Suganthan, P.; Chen, Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization; Technical Report 201411A; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2014; Volume 29, pp. 625–640. [Google Scholar]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive GainingSharing knowledge based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2014, 45, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, W.B. Optimal foraging algorithm for global optimization. Appl. Soft Comput. 2017, 51, 294–313. [Google Scholar] [CrossRef]
- Viktorin, A.; Pluhacek, M.; Senkerik, R. Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4797–4803. [Google Scholar]
- Li, J.; Gao, Y.; Zhang, H.; Yang, Q. Self-adaptive opposition-based differential evolution with subpopulation strategy for numerical and engineering optimization problems. Complex Intell. Syst. 2022, 8, 2051–2089. [Google Scholar] [CrossRef]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository; Irvine University of California: Irvine, CA, USA, 2007. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2019, 116, 147–160. [Google Scholar] [CrossRef]
- Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309. [Google Scholar]
- Yuan, J.; Zhao, Z.; Liu, Y.; He, B.; Wang, L.; Xie, B.; Gao, Y. DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm. IEEE Access 2021, 9, 16623–16629. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Sayed, A.M.; Khattab, A.R.; AboulMagd, A.M.; Hassan, H.M.; Rateb, M.E.; Zaid, H.; Abdelmohsen, U.R. Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale. RSC Adv. 2020, 10, 19790–19802. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Mo, Y.; Li, S.; Lin, D.; Yang, Z.; Yang, Z.; Sun, H.; Qiu, J.; Liao, Y.; et al. A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: A multi-center study. Eur. Radiol. 2020, 30, 4893–4902. [Google Scholar] [CrossRef] [Green Version]
- Iwendi, C.; Bashir, A.K.; Peshkar, A.; Sujatha, R.; Chatterjee, J.M.; Pasupuleti, S.; Mishra, R.; Pillai, S.; Jo, O. COVID-19 patient health prediction using boosted random forest algorithm. Front. Public Health 2020, 8, 357. [Google Scholar] [CrossRef]
No. | Functions | ||
---|---|---|---|
Unimodal Function | 1 | CEC 2017 [85] F1 | 100 |
Basic Functions | 2 | CEC 2014 [84] F11 | 1100 |
3 | CEC 2017 [85] F7 | 700 | |
4 | CEC 2017 [85] F19 | 1900 | |
Hybrid Functions | 5 | CEC 2014 [84] F17 | 1700 |
6 | CEC 2017 [85] F16 | 1600 | |
7 | CEC 2014 [84] F21 | 2100 | |
Composition Functions | 8 | CEC 2017 [85] F22 | 2200 |
9 | CEC 2017 [85] F24 | 2400 | |
10 | CEC 2017 [85] F25 | 2500 | |
Search Range = |
ABC Mean (Std) | PSO Mean (Std) | CSO Mean (Std) | DE Mean (Std) | SSA Mean (Std) | OFA Mean (Std) | SHADE Mean (Std) | TFSSA Mean (Std) | |
---|---|---|---|---|---|---|---|---|
CEC2020_F1 | () + | () + | () = | () - | () = | () + | ()+ | () |
CEC2020_F2 | () + | () - | () + | () + | () + | () + | () + | () |
CEC2020_F3 | () = | () + | () + | () + | () + | () = | () + | () |
CEC2020_F4 | () + | () + | () + | () + | () + | () - | () - | () |
CEC2020_F5 | () = | () - | () + | () = | () = | () = | () + | () |
CEC2020_F6 | () + | () - | () - | () - | () + | () - | () - | () |
CEC2020_F7 | () + | () - | () - | () + | () + | () = | () + | () |
CEC2020_F8 | () = | () = | () + | () = | () = | () + | () = | () |
CEC2020_F9 | () + | () + | () + | () + | () = | () + | () = | () |
CEC2020_F10 | () = | () + | () + | () + | () = | () - | () + | () |
+/-/= | 6/0/4 | 5/4/1 | 7/2/1 | 6/2/2 | 5/0/5 | 4/3/3 | 6/2/2 |
ABC Mean (Std) | PSO Mean (Std) | CSO Mean (Std) | DE Mean (Std) | SSA Mean (Std) | OFA Mean (Std) | SHADE Mean (Std) | TFSSA Mean (Std) | |
---|---|---|---|---|---|---|---|---|
CEC2020_F1 | () + | () + | () + | () + | () + | () - | () - | () |
CEC2020_F2 | () + | () - | () = | () + | () - | () + | () + | () |
CEC2020_F3 | () - | () + | () + | () - | () + | () + | () + | () |
CEC2020_F4 | () - | () + | () = | () - | () - | () + | () + | () |
CEC2020_F5 | () = | () = | () + | () + | () + | () = | () + | () |
CEC2020_F6 | () + | () - | () - | () + | () - | () - | () - | () |
CEC2020_F7 | () = | () = | () + | () + | () + | () = | () + | () |
CEC2020_F8 | () + | () + | () + | () - | () + | () + | () - | () |
CEC2020_F9 | () + | () - | () = | () + | () + | () = | () - | () |
CEC2020_F10 | () + | () + | () + | () - | () + | () + | () + | () |
+/-/= | 6/2/2 | 5/3/2 | 6/1/3 | 6/4/0 | 7/3/0 | 5/2/3 | 6/4/0 |
ABC Mean (Std) | PSO Mean (Std) | CSO Mean (Std) | DE Mean (Std) | SSA Mean (Std) | OFA Mean (Std) | SHADE Mean (Std) | TFSSA Mean (Std) | |
---|---|---|---|---|---|---|---|---|
CEC2020_F1 | () + | () + | () + | () + | () - | () + | () + | () |
CEC2020_F2 | () + | () - | () - | () = | () + | () + | () - | () |
CEC2020_F3 | () - | () + | () - | () + | () + | () - | () + | () |
CEC2020_F4 | () - | () - | () - | () - | () - | () + | () - | () |
CEC2020_F5 | () + | () = | () + | () + | () = | () = | () + | () |
CEC2020_F6 | () - | () + | () - | () - | () - | () - | () - | () |
CEC2020_F7 | () = | () = | () + | () + | () = | () = | () + | () |
CEC2020_F8 | () - | () - | () - | () + | () - | () - | () - | () |
CEC2020_F9 | () + | () + | () + | () = | () + | () + | () + | () |
CEC2020_F10 | () + | () + | () - | () - | () + | () + | () + | () |
+/-/= | 5/4/1 | 5/3/2 | 4/6/0 | 5/3/2 | 4/4/2 | 5/3/2 | 6/4/0 |
a | CEC2020 Functions | |||||
---|---|---|---|---|---|---|
F1(20D) | F2(20D) | F3(20D) | F1(10D) | F2(10D) | F3(10D) | |
0.75 | ||||||
0.7 | ||||||
0.65 | ||||||
0.6 |
CEC2020 Functions | ||||||
---|---|---|---|---|---|---|
F1(20D) | F2(20D) | F3(20D) | F1(10D) | F2(10D) | F3(10D) | |
1.4 | ||||||
1.5 | ||||||
1.6 | ||||||
1.7 |
c | CEC2020 Functions | |||||
---|---|---|---|---|---|---|
F1(20D) | F2(20D) | F3(20D) | F1(10D) | F2(10D) | F3(10D) | |
0.8 | ||||||
0.85 | ||||||
0.9 | ||||||
0.95 |
ABC | PSO | CSO | DE | SSA | OFA | SHADE | TFSSA |
---|---|---|---|---|---|---|---|
0.117 | 0.123 | 0.190 | 0.132 | 0.194 | 0.103 | 0.178 | 0.141 |
0.136 | 0.144 | 0.210 | 0.148 | 0.217 | 0.105 | 0.213 | 0.164 |
0.130 | 0.136 | 0.199 | 0.141 | 0.196 | 0.103 | 0.202 | 0.146 |
0.121 | 0.130 | 0.195 | 0.131 | 0.202 | 0.100 | 0.198 | 0.136 |
0.172 | 0.126 | 0.209 | 0.144 | 0.215 | 0.120 | 0.213 | 0.153 |
0.148 | 0.130 | 0.231 | 0.152 | 0.200 | 0.119 | 0.196 | 0.160 |
0.142 | 0.154 | 0.231 | 0.195 | 0.228 | 0.109 | 0.209 | 0.196 |
0.202 | 0.168 | 0.256 | 0.167 | 0.295 | 0.151 | 0.238 | 0.167 |
0.260 | 0.176 | 0.391 | 0.221 | 0.312 | 0.166 | 0.281 | 0.215 |
0.260 | 0.188 | 0.265 | 0.192 | 0.257 | 0.146 | 0.238 | 0.215 |
ABC | PSO | CSO | DE | SSA | OFA | SHADE | TFSSA |
---|---|---|---|---|---|---|---|
0.27314 | 0.17447 | 0.21609 | 0.18038 | 0.25067 | 0.13861 | 0.19847 | 0.19285 |
0.17174 | 0.14590 | 0.21438 | 0.23227 | 0.24845 | 0.12954 | 0.20751 | 0.19680 |
0.14075 | 0.14449 | 0.18067 | 0.17106 | 0.24346 | 0.12337 | 0.18830 | 0.19825 |
0.13625 | 0.13080 | 0.19684 | 0.15475 | 0.22128 | 0.12704 | 0.18636 | 0.17833 |
0.18806 | 0.15771 | 0.22111 | 0.19518 | 0.25376 | 0.12731 | 0.21287 | 0.20431 |
0.16081 | 0.16362 | 0.22160 | 0.18305 | 0.25280 | 0.11954 | 0.21252 | 0.19229 |
0.18113 | 0.16160 | 0.22597 | 0.18884 | 0.25475 | 0.13430 | 0.21125 | 0.20429 |
0.18804 | 0.17925 | 0.28799 | 0.19967 | 0.27466 | 0.15683 | 0.22740 | 0.23170 |
0.20090 | 0.22087 | 0.27973 | 0.26221 | 0.29791 | 0.17547 | 0.26660 | 0.25203 |
0.21197 | 0.21208 | 0.33228 | 0.21209 | 0.30600 | 0.18752 | 0.27462 | 0.23527 |
ABC | PSO | CSO | DE | SSA | OFA | SHADE | TFSSA |
---|---|---|---|---|---|---|---|
0.28840 | 0.19697 | 0.19697 | 0.17951 | 0.27007 | 0.12649 | 0.20115 | 0.22174 |
0.18208 | 0.22409 | 0.22409 | 0.28066 | 0.29550 | 0.15021 | 0.22463 | 0.22936 |
0.14329 | 0.19587 | 0.19587 | 0.19650 | 0.30428 | 0.12872 | 0.21098 | 0.22780 |
0.15119 | 0.20386 | 0.20386 | 0.19689 | 0.25890 | 0.12878 | 0.21079 | 0.20586 |
0.17717 | 0.22385 | 0.22385 | 0.20411 | 0.27980 | 0.14777 | 0.22679 | 0.23241 |
0.17056 | 0.20903 | 0.20903 | 0.19523 | 0.27751 | 0.14084 | 0.21278 | 0.22460 |
0.19126 | 0.22421 | 0.22421 | 0.20025 | 0.29574 | 0.16213 | 0.22949 | 0.21372 |
0.22325 | 0.27305 | 0.27305 | 0.24980 | 0.30859 | 0.19916 | 0.25927 | 0.25078 |
0.22689 | 0.32813 | 0.32813 | 0.29938 | 0.32780 | 0.22705 | 0.30924 | 0.28994 |
0.24966 | 0.31390 | 0.31390 | 0.25017 | 0.34546 | 0.18456 | 0.29214 | 0.26953 |
No. | Dataset | #Feat | #SMP | #CL | Area |
---|---|---|---|---|---|
1 | BreastCO | 9 | 699 | 2 | Medical |
2 | BreastCWD | 30 | 569 | 2 | Medical |
3 | Clean-1 | 166 | 476 | 2 | Physical |
4 | Clean-2 | 166 | 6598 | 2 | Physical |
5 | CongressVR | 16 | 435 | 2 | Social |
6 | Exactly-1 | 13 | 1000 | 2 | Biology |
7 | Exactly-2 | 13 | 1000 | 2 | Biology |
8 | StatlogH | 13 | 270 | 5 | Life |
9 | IonosphereVS | 34 | 351 | 2 | Physical |
10 | KrvskpEW | 36 | 3196 | 2 | Game |
11 | Lymphography | 18 | 148 | 4 | Medical |
12 | M-of-n | 13 | 1000 | 2 | Biology |
13 | Penglung | 325 | 73 | 2 | Biology |
14 | Semeion | 265 | 1593 | 2 | Computer |
15 | SonarMR | 60 | 208 | 2 | Physical |
16 | Spectheart | 22 | 267 | 2 | Life |
17 | 3T Endgame | 9 | 958 | 2 | Game |
18 | Vote | 16 | 300 | 2 | Life |
19 | WaveformV2 | 40 | 5000 | 3 | Physical |
20 | Wine | 13 | 178 | 3 | Physical |
21 | Zoology | 16 | 101 | 7 | Life |
Parameter Description | Value |
---|---|
a parameter in Tent chaos | |
parameter in Lévy flights | |
parameter in | |
parameter in | |
Count of runs (M) | 20 |
The amount of search agents | 7 |
The amount of T_max | 100 |
Problem Dimensions | No. of features in each datasets |
K for cross-validation | 10 |
Search field | |
GA crossover ratio | |
GA mutation ratio | |
Selection strategy in GA | Roulette wheel |
A factors in WOA | |
Acceleration factors in PSO | |
Inertia index(w) in PSO | |
A factors in GWO | |
Mutation rate in ALO | |
Parameter(a) in bBOA | |
Parameter(c) in bBOA | |
The amount of clusters in BSO | 5 |
No. | Datasets | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 0.9591 | 0.9200 | 0.9597 | 0.9603 | 0.9609 | 0.9286 | 0.9626 | 0.9600 | 0.9611 | 0.9668 |
2 | BreastCWD | 0.9392 | 0.9020 | 0.9488 | 0.9375 | 0.9385 | 0.9396 | 0.9385 | 0.9347 | 0.9396 | 0.9718 |
3 | Clean-1 | 0.8465 | 0.8261 | 0.8697 | 0.8580 | 0.8549 | 0.8562 | 0.8541 | 0.8431 | 0.8585 | 0.8923 |
4 | Clean-2 | 0.9496 | 0.9391 | 0.9423 | 0.9463 | 0.9465 | 0.9480 | 0.9487 | 0.9462 | 0.9510 | 0.9667 |
5 | CongressVR | 0.9370 | 0.8547 | 0.9413 | 0.9327 | 0.9235 | 0.9280 | 0.9318 | 0.9321 | 0.9349 | 0.9521 |
6 | Exactly-1 | 0.7061 | 0.6021 | 0.7306 | 0.7249 | 0.7471 | 0.8531 | 0.7481 | 0.7091 | 0.7197 | 0.8524 |
7 | Exactly-2 | 0.6980 | 0.6345 | 0.6940 | 0.6929 | 0.6959 | 0.6527 | 0.7007 | 0.6985 | 0.6977 | 0.7472 |
8 | StatlogH | 0.7773 | 0.6948 | 0.7867 | 0.7768 | 0.7788 | 0.7583 | 0.7773 | 0.7595 | 0.7842 | 0.8127 |
9 | IonosphereVS | 0.8595 | 0.8538 | 0.8938 | 0.8682 | 0.8485 | 0.8639 | 0.8708 | 0.8890 | 0.8826 | 0.9042 |
10 | KrvskpEW | 0.9006 | 0.7603 | 0.9215 | 0.9143 | 0.9200 | 0.8580 | 0.9269 | 0.8929 | 0.8980 | 0.9360 |
11 | Lymphography | 0.7863 | 0.6931 | 0.8164 | 0.7629 | 0.7906 | 0.8613 | 0.7793 | 0.7736 | 0.7880 | 0.8667 |
12 | M-of-n | 0.8184 | 0.7033 | 0.7988 | 0.8272 | 0.8425 | 0.8689 | 0.8293 | 0.8361 | 0.8549 | 0.9020 |
13 | Penglung | 0.8072 | 0.7676 | 0.6721 | 0.8341 | 0.8140 | 0.8482 | 0.8268 | 0.8331 | 0.7951 | 0.8745 |
14 | Semeion | 0.9584 | 0.9461 | 0.9557 | 0.9471 | 0.9476 | 0.9480 | 0.9521 | 0.9449 | 0.9504 | 0.9729 |
15 | SonarMR | 0.8487 | 0.7936 | 0.8750 | 0.8622 | 0.8667 | 0.8614 | 0.8506 | 0.8449 | 0.8506 | 0.8634 |
16 | Spectheart | 0.7881 | 0.7507 | 0.8097 | 0.7846 | 0.7841 | 0.7643 | 0.8000 | 0.7826 | 0.7871 | 0.8443 |
17 | 3T Endgame | 0.7587 | 0.6601 | 0.7609 | 0.7537 | 0.8622 | 0.8667 | 0.7564 | 0.7557 | 0.7546 | 0.8983 |
18 | Vote | 0.9258 | 0.8413 | 0.9333 | 0.9196 | 0.9258 | 0.9618 | 0.9227 | 0.9196 | 0.9200 | 0.9695 |
19 | WaveformV2 | 0.7066 | 0.6150 | 0.6921 | 0.7096 | 0.7192 | 0.7827 | 0.7154 | 0.7091 | 0.7044 | 0.7929 |
20 | Wine | 0.9543 | 0.8652 | 0.9536 | 0.9476 | 0.9521 | 0.9474 | 0.9551 | 0.9506 | 0.9566 | 0.9843 |
21 | Zoology | 0.9216 | 0.8131 | 0.9294 | 0.9525 | 0.9451 | 0.8827 | 0.9359 | 0.9476 | 0.9307 | 0.9525 |
AVG. | 0.8499 | 0.7827 | 0.8517 | 0.8530 | 0.8602 | 0.8657 | 0.8563 | 0.8506 | 0.8533 | 0.9011 |
No. | Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | AVG.NOF. | ||
(AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | (AVG_Ri.) | ||
1 | BreastCO | 7.00 (0.778) | 6.40 (0.711) | 6.10 (0.678) | 6.90 (0.767) | 5.70 (0.633) | 5.60 (0.622) | 6.27 (0.697) | 7.20 (0.800) | 5.70 (0.633) | 4.40 (0.489) |
2 | BreastCWD | 24.27 (0.809) | 13.73 (0.458) | 12.20 (0.407) | 19.00 (0.633) | 18.33 (0.611) | 16.80 (0.560) | 20.00 (0.667) | 18.27 (0.609) | 20.47 (0.682) | 8.40 (0.280) |
3 | Clean-1 | 132.00 (0.795) | 98.73 (0.595) | 98.90 (0.596) | 109.60 (0.660) | 104.93 (0.632) | 91.80 (0.553) | 109.67 (0.661) | 94.87 (0.572) | 90.20 (0.543) | 90.27 (0.544) |
4 | Clean-2 | 95.00 (0.572) | 101.00 (0.608) | 94.10 (0.567) | 106.00 (0.639) | 109.40 (0.659) | 92.40 (0.557) | 100.40 (0.605) | 90.40 (0.545) | 92.40 (0.557) | 90.28 (0.544) |
5 | CongressVR | 9.87 (0.617) | 7.53 (0.471) | 7.10 (0.444) | 9.80 (0.613) | 10.80 (0.675) | 6.40 (0.400) | 10.87 (0.679) | 8.40 (0.525) | 9.00 (0.563) | 6.15 (0.384) |
6 | Exactly-1 | 12.87 (0.990) | 7.73 (0.595) | 8.10 (0.623) | 12.07 (0.928) | 9.00 (0.692) | 7.60 (0.585) | 10.53 (0.810) | 12.80 (0.985) | 10.47 (0.805) | 6.48 (0.498) |
7 | Exactly-2 | 8.40 (0.646) | 6.27 (0.482) | 7.10 (0.546) | 7.53 (0.579) | 9.40 (0.723) | 4.80 (0.369) | 8.67 (0.667) | 6.27 (0.482) | 9.00 (0.692) | 4.62 (0.355) |
8 | StatlogH | 10.40 (0.800) | 6.60 (0.508) | 6.60 (0.508) | 8.80 (0.677) | 9.07 (0.698) | 5.80 (0.446) | 9.60 (0.738) | 7.47 (0.575) | 8.47 (0.652) | 4.86 (0.374) |
9 | IonosphereVS | 20.13 (0.592) | 15.93 (0.469) | 13.50 (0.397) | 17.33 (0.510) | 19.20 (0.565) | 16.20 (0.476) | 18.00 (0.529) | 19.67 (0.579) | 19.07 (0.561) | 17.14 (0.504) |
10 | KrvskpEW | 35.80 (0.994) | 17.80 (0.494) | 18.00 (0.500) | 31.60 (0.878) | 25.60 (0.711) | 17.60 (0.489) | 28.60 (0.794) | 29.40 (0.817) | 20.80 (0.578) | 16.91 (0.470) |
11 | Lymphography | 13.33 (0.741) | 9.47 (0.526) | 8.90 (0.494) | 11.80 (0.656) | 11.73 (0.652) | 8.40 (0.467) | 12.53 (0.696) | 12.20 (0.678) | 8.87 (0.493) | 9.17 (0.509) |
12 | M-of-n | 11.27 (0.867) | 6.90 (0.531) | 7.68 (0.591) | 11.27 (0.867) | 10.87 (0.836) | 6.80 (0.523) | 12.13 (0.933) | 12.33 (0.948) | 10.67 (0.821) | 6.30 (0.485) |
13 | Penglung | 172.07 (0.529) | 160.60 (0.494) | 153.00 (0.471) | 162.80 (0.501) | 183.33 (0.564) | 172.00 (0.529) | 175.20 (0.539) | 162.33 (0.499) | 182.67 (0.562) | 161.42 (0.497) |
14 | Semeion | 187.80 (0.709) | 162.00 (0.611) | 149.40 (0.564) | 203.60 (0.768) | 171.60 (0.648) | 143.20 (0.540) | 193.00 (0.728) | 161.80 (0.611) | 194.40 (0.734) | 142.38 (0.537) |
15 | SonarMR | 48.00 (0.800) | 30.60 (0.510) | 30.30 (0.505) | 41.60 (0.693) | 37.60 (0.627) | 32.80 (0.547) | 29.40 (0.490) | 34.13 (0.569) | 37.13 (0.619) | 22.36 (0.373) |
16 | Spectheart | 13.87 (0.630) | 10.87 (0.494) | 7.00 (0.318) | 13.20 (0.600) | 12.07 (0.549) | 10.80 (0.491) | 14.67 (0.667) | 11.33 (0.515) | 9.60 (0.436) | 8.60 (0.391) |
17 | 3T Endgame | 8.80 (0.978) | 5.88 (0.653) | 5.80 (0.644) | 7.53 (0.837) | 6.73 (0.748) | 5.60 (0.622) | 7.20 (0.800) | 8.07 (0.897) | 7.47 (0.830) | 5.29 (0.588) |
18 | Vote | 8.40 (0.525) | 7.87 (0.492) | 5.80 (0.363) | 8.47 (0.529) | 9.33 (0.583) | 5.20 (0.325) | 8.87 (0.554) | 8.53 (0.533) | 9.60 (0.600) | 8.67 (0.542) |
19 | WaveformV2 | 39.60 (0.990) | 29.00 (0.725) | 30.40 (0.760) | 36.60 (0.915) | 35.80 (0.895) | 25.00 (0.625) | 36.00 (0.900) | 37.20 (0.930) | 34.40 (0.860) | 24.56 (0.614) |
20 | Wine | 11.07 (0.852) | 6.67 (0.513) | 6.73 (0.518) | 10.73 (0.825) | 10.07 (0.775) | 6.20 (0.477) | 9.53 (0.733) | 9.07 (0.698) | 9.40 (0.723) | 6.34 (0.488) |
21 | Zoology | 11.67 (0.729) | 7.67 (0.479) | 5.35 (0.334) | 12.40 (0.775) | 11.80 (0.738) | 5.20 (0.325) | 11.47 (0.717) | 11.93 (0.746) | 9.60 (0.600) | 5.78 (0.361) |
AVG. | 41.98 (0.759) | 34.25 (0.544) | 32.48 (0.516) | 40.41 (0.707) | 39.16 (0.677) | 32.68 (0.501) | 39.65 (0.695) | 36.37 (0.672) | 38.07 (0.645) | 30.97 (0.468) |
No. | Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 0.048 | 0.084 | 0.046 | 0.047 | 0.045 | 0.040 | 0.041 | 0.046 | 0.048 | 0.032 |
2 | BreastCWD | 0.068 | 0.102 | 0.055 | 0.068 | 0.068 | 0.042 | 0.068 | 0.067 | 0.071 | 0.045 |
3 | Clean-1 | 0.160 | 0.177 | 0.134 | 0.147 | 0.150 | 0.113 | 0.151 | 0.147 | 0.160 | 0.108 |
4 | Clean-2 | 0.055 | 0.065 | 0.062 | 0.060 | 0.060 | 0.051 | 0.057 | 0.054 | 0.058 | 0.041 |
5 | CongressVR | 0.069 | 0.149 | 0.063 | 0.073 | 0.082 | 0.045 | 0.074 | 0.042 | 0.072 | 0.035 |
6 | Exactly-1 | 0.301 | 0.400 | 0.270 | 0.282 | 0.257 | 0.040 | 0.257 | 0.286 | 0.298 | 0.229 |
7 | Exactly-2 | 0.305 | 0.367 | 0.308 | 0.310 | 0.308 | 0.260 | 0.303 | 0.306 | 0.303 | 0.240 |
8 | StatlogH | 0.228 | 0.307 | 0.216 | 0.228 | 0.226 | 0.180 | 0.228 | 0.220 | 0.244 | 0.185 |
9 | IonosphereVS | 0.145 | 0.149 | 0.109 | 0.136 | 0.124 | 0.096 | 0.133 | 0.122 | 0.116 | 0.081 |
10 | KrvskpEW | 0.108 | 0.242 | 0.083 | 0.094 | 0.086 | 0.054 | 0.080 | 0.140 | 0.116 | 0.044 |
11 | Lymphography | 0.219 | 0.309 | 0.187 | 0.241 | 0.214 | 0.189 | 0.225 | 0.216 | 0.231 | 0.109 |
12 | M-of-n | 0.188 | 0.299 | 0.205 | 0.180 | 0.164 | 0.027 | 0.178 | 0.152 | 0.172 | 0.024 |
13 | Penglung | 0.196 | 0.235 | 0.129 | 0.169 | 0.190 | 0.118 | 0.177 | 0.209 | 0.170 | 0.106 |
14 | Semeion | 0.045 | 0.049 | 0.039 | 0.050 | 0.059 | 0.036 | 0.055 | 0.057 | 0.052 | 0.021 |
15 | SonarMR | 0.158 | 0.209 | 0.128 | 0.143 | 0.138 | 0.086 | 0.155 | 0.154 | 0.159 | 0.079 |
16 | Spectheart | 0.216 | 0.252 | 0.192 | 0.219 | 0.219 | 0.160 | 0.205 | 0.217 | 0.220 | 0.120 |
17 | 3T Endgame | 0.249 | 0.342 | 0.243 | 0.252 | 0.253 | 0.205 | 0.249 | 0.251 | 0.251 | 0.219 |
18 | Vote | 0.079 | 0.162 | 0.070 | 0.085 | 0.079 | 0.044 | 0.082 | 0.085 | 0.085 | 0.037 |
19 | WaveformV2 | 0.300 | 0.386 | 0.319 | 0.297 | 0.287 | 0.265 | 0.291 | 0.301 | 0.298 | 0.254 |
20 | Wine | 0.054 | 0.139 | 0.051 | 0.060 | 0.055 | 0.023 | 0.052 | 0.050 | 0.056 | 0.023 |
21 | Zoology | 0.085 | 0.190 | 0.073 | 0.055 | 0.062 | 0.034 | 0.071 | 0.075 | 0.059 | 0.021 |
AVG. | 0.156 | 0.220 | 0.142 | 0.152 | 0.149 | 0.100 | 0.149 | 0.152 | 0.154 | 0.098 |
No. | Dataset | ALO | BS0 | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 0.038 | 0.046 | 0.040 | 0.038 | 0.039 | 0.024 | 0.031 | 0.038 | 0.038 | 0.022 |
2 | BreastCWD | 0.066 | 0.065 | 0.048 | 0.048 | 0.049 | 0.032 | 0.051 | 0.052 | 0.059 | 0.029 |
3 | Clean-1 | 0.118 | 0.130 | 0.122 | 0.117 | 0.100 | 0.088 | 0.118 | 0.100 | 0.122 | 0.074 |
4 | Clean-2 | 0.049 | 0.058 | 0.062 | 0.056 | 0.058 | 0.037 | 0.050 | 0.052 | 0.054 | 0.033 |
5 | CongressVR | 0.044 | 0.076 | 0.054 | 0.042 | 0.048 | 0.030 | 0.035 | 0.045 | 0.041 | 0.026 |
6 | Exactly-1 | 0.267 | 0.328 | 0.015 | 0.173 | 0.138 | 0.005 | 0.155 | 0.089 | 0.229 | 0.224 |
7 | Exactly-2 | 0.252 | 0.296 | 0.295 | 0.279 | 0.275 | 0.225 | 0.238 | 0.237 | 0.270 | 0.221 |
8 | StatlogH | 0.172 | 0.206 | 0.202 | 0.189 | 0.178 | 0.138 | 0.159 | 0.163 | 0.194 | 0.134 |
9 | IonosphereVS | 0.111 | 0.101 | 0.099 | 0.088 | 0.081 | 0.060 | 0.104 | 0.092 | 0.078 | 0.056 |
10 | KruskpLW | 0.093 | 0.133 | 0.063 | 0.090 | 0.052 | 0.036 | 0.062 | 0.084 | 0.111 | 0.032 |
11 | Lymphography | 0.165 | 0.220 | 0.168 | 0.193 | 0.179 | 0.183 | 0.166 | 0.168 | 0.169 | 0.064 |
12 | M-of-n | 0.160 | 0.170 | 0.140 | 0.128 | 0.064 | 0.005 | 0.157 | 0.101 | 0.035 | 0.003 |
13 | Penglung | 0.085 | 0.085 | 0.137 | 0.085 | 0.086 | 0.033 | 0.035 | 0.062 | 0.112 | 0.029 |
14 | Semeion | 0.041 | 0.046 | 0.033 | 0.044 | 0.042 | 0.029 | 0.040 | 0.047 | 0.045 | 0.020 |
15 | SonarMR | 0.128 | 0.139 | 0.109 | 0.090 | 0.091 | 0.072 | 0.113 | 0.081 | 0.129 | 0.069 |
16 | Spectheart | 0.144 | 0.198 | 0.170 | 0.149 | 0.166 | 0.122 | 0.142 | 0.159 | 0.173 | 0.118 |
17 | 3T Endgame | 0.213 | 0.252 | 0.232 | 0.223 | 0.204 | 0.195 | 0.217 | 0.219 | 0.213 | 0.183 |
18 | Vote | 0.043 | 0.065 | 0.061 | 0.051 | 0.039 | 0.016 | 0.051 | 0.060 | 0.050 | 0.012 |
19 | WaveformLW | 0.294 | 0.338 | 0.312 | 0.283 | 0.271 | 0.254 | 0.278 | 0.291 | 0.291 | 0.250 |
20 | Wine | 0.029 | 0.061 | 0.038 | 0.019 | 0.028 | 0.005 | 0.031 | 0.028 | 0.016 | 0.003 |
21 | Zoology | 0.026 | 0.025 | 0.061 | 0.007 | 0.008 | 0.002 | 0.007 | 0.009 | 0.026 | 0.002 |
AVG. | 0.121 | 0.145 | 0.117 | 0.114 | 0.105 | 0.076 | 0.107 | 0.104 | 0.117 | 0.076 |
No. | Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 0.059 | 0.196 | 0.051 | 0.054 | 0.06 | 0.041 | 0.059 | 0.056 | 0.058 | 0.036 |
2 | BreastCWD | 0.083 | 0.144 | 0.063 | 0.085 | 0.078 | 0.049 | 0.09 | 0.095 | 0.088 | 0.049 |
3 | Clean-1 | 0.193 | 0.208 | 0.143 | 0.187 | 0.186 | 0.138 | 0.178 | 0.214 | 0.200 | 0.153 |
4 | Clean-2 | 0.060 | 0.073 | 0.071 | 0.063 | 0.061 | 0.068 | 0.059 | 0.057 | 0.064 | 0.043 |
5 | CongressVR | 0.110 | 0.267 | 0.083 | 0.110 | 0.149 | 0.058 | 0.107 | 0.096 | 0.120 | 0.053 |
6 | Exactly-1 | 0.343 | 0.448 | 0.378 | 0.344 | 0.384 | 0.115 | 0.319 | 0.375 | 0.335 | 0.285 |
7 | Exactly-2 | 0.355 | 0.517 | 0.331 | 0.333 | 0.335 | 0.291 | 0.330 | 0.337 | 0.363 | 0.287 |
8 | StatlogH | 0.289 | 0.378 | 0.261 | 0.256 | 0.288 | 0.195 | 0.284 | 0.277 | 0.299 | 0.191 |
9 | IonosphereVS | 0.168 | 0.195 | 0.134 | 0.179 | 0.163 | 0.118 | 0.157 | 0.155 | 0.157 | 0.114 |
10 | KruskpLW | 0.118 | 0.344 | 0.150 | 0.096 | 0.164 | 0.064 | 0.097 | 0.176 | 0.121 | 0.060 |
11 | Lymphography | 0.251 | 0.378 | 0.220 | 0.299 | 0.276 | 0.194 | 0.303 | 0.261 | 0.299 | 0.146 |
12 | M-of-n | 0.224 | 0.391 | 0.288 | 0.235 | 0.287 | 0.110 | 0.210 | 0.236 | 0.212 | 0.206 |
13 | Penglung | 0.300 | 0.460 | 0.190 | 0.246 | 0.328 | 0.169 | 0.326 | 0.379 | 0.273 | 0.153 |
14 | Semeion | 0.049 | 0.056 | 0.043 | 0.064 | 0.072 | 0.049 | 0.070 | 0.077 | 0.065 | 0.025 |
15 | SonarMR | 0.216 | 0.253 | 0.156 | 0.218 | 0.187 | 0.109 | 0.217 | 0.198 | 0.214 | 0.103 |
16 | Spectheart | 0.271 | 0.322 | 0.218 | 0.265 | 0.265 | 0.209 | 0.252 | 0.271 | 0.262 | 0.201 |
17 | 3T Endgame | 0.275 | 0.436 | 0.255 | 0.309 | 0.331 | 0.216 | 0.293 | 0.307 | 0.293 | 0.225 |
18 | Vote | 0.113 | 0.256 | 0.088 | 0.169 | 0.119 | 0.057 | 0.124 | 0.138 | 0.118 | 0.056 |
19 | WaveformV2 | 0.304 | 0.434 | 0.319 | 0.316 | 0.303 | 0.265 | 0.299 | 0.313 | 0.305 | 0.259 |
20 | Wine | 0.075 | 0.303 | 0.082 | 0.142 | 0.075 | 0.028 | 0.086 | 0.077 | 0.076 | 0.026 |
21 | Zoology | 0.158 | 0.430 | 0.101 | 0.203 | 0.182 | 0.048 | 0.125 | 0.181 | 0.107 | 0.039 |
AVG. | 0.191 | 0.309 | 0.173 | 0.199 | 0.204 | 0.123 | 0.190 | 0.204 | 0.192 | 0.129 |
No. | Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 0.008 | 0.023 | 0.005 | 0.011 | 0.008 | 0.006 | 0.011 | 0.013 | 0.009 | 0.005 |
2 | BreastCWD | 0.007 | 0.044 | 0.003 | 0.006 | 0.006 | 0.003 | 0.010 | 0.005 | 0.005 | 0.003 |
3 | Clean-1 | 0.017 | 0.048 | 0.008 | 0.019 | 0.026 | 0.010 | 0.021 | 0.016 | 0.020 | 0.018 |
4 | Clean-2 | 0.023 | 0.036 | 0.136 | 0.051 | 0.067 | 0.012 | 0.038 | 0.066 | 0.025 | 0.010 |
5 | CongressVR | 0.030 | 0.066 | 0.014 | 0.013 | 0.019 | 0.020 | 0.022 | 0.023 | 0.025 | 0.011 |
6 | Exactly-1 | 0.031 | 0.051 | 0.020 | 0.023 | 0.029 | 0.011 | 0.028 | 0.035 | 0.028 | 0.020 |
7 | Exactly-2 | 0.019 | 0.023 | 0.012 | 0.022 | 0.023 | 0.059 | 0.015 | 0.019 | 0.021 | 0.054 |
8 | StatlogH | 0.009 | 0.094 | 0.033 | 0.002 | 0.045 | 0.008 | 0.014 | 0.037 | 0.005 | 0.011 |
9 | IonosphereVS | 0.026 | 0.049 | 0.016 | 0.030 | 0.028 | 0.014 | 0.041 | 0.032 | 0.042 | 0.010 |
10 | KrvskpEW | 0.020 | 0.074 | 0.054 | 0.030 | 0.058 | 0.033 | 0.018 | 0.035 | 0.049 | 0.031 |
11 | Lymphography | 0.025 | 0.037 | 0.013 | 0.040 | 0.029 | 0.018 | 0.023 | 0.030 | 0.021 | 0.018 |
12 | M-of-n | 0.035 | 0.036 | 0.016 | 0.031 | 0.027 | 0.035 | 0.030 | 0.031 | 0.025 | 0.015 |
13 | Penglung | 0.020 | 0.053 | 0.006 | 0.026 | 0.034 | 0.007 | 0.023 | 0.025 | 0.021 | 0.018 |
14 | Semeion | 0.019 | 0.057 | 0.009 | 0.029 | 0.019 | 0.010 | 0.019 | 0.024 | 0.020 | 0.008 |
15 | SonarMR | 0.004 | 0.088 | 0.003 | 0.012 | 0.012 | 0.001 | 0.009 | 0.009 | 0.006 | 0.001 |
16 | Spectheart | 0.012 | 0.067 | 0.011 | 0.033 | 0.012 | 0.010 | 0.013 | 0.014 | 0.015 | 0.012 |
17 | 3T Endgame | 0.035 | 0.128 | 0.015 | 0.047 | 0.050 | 0.044 | 0.037 | 0.047 | 0.028 | 0.041 |
18 | Vote | 0.021 | 0.026 | 0.009 | 0.022 | 0.028 | 0.016 | 0.018 | 0.029 | 0.022 | 0.015 |
19 | WaveformV2 | 0.004 | 0.005 | 0.004 | 0.002 | 0.001 | 0.001 | 0.003 | 0.002 | 0.004 | 0.001 |
20 | Wine | 0.072 | 0.102 | 0.018 | 0.046 | 0.077 | 0.056 | 0.077 | 0.093 | 0.052 | 0.018 |
21 | Zoology | 0.007 | 0.002 | 0.001 | 0.005 | 0.002 | 0.004 | 0.003 | 0.006 | 0.004 | 0.002 |
No. | Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | 4.90 | 3.02 | 2.34 | 3.45 | 2.39 | 2.48 | 2.36 | 2.32 | 2.45 | 2.27 |
2 | BreastCWD | 2.87 | 2.85 | 2.37 | 3.61 | 2.43 | 2.82 | 2.41 | 2.36 | 2.35 | 2.32 |
3 | Clean-1 | 5.31 | 3.58 | 4.07 | 3.39 | 3.66 | 4.05 | 3.61 | 3.50 | 3.54 | 3.84 |
4 | Clean-2 | 310.83 | 223.69 | 279.32 | 158.67 | 227.16 | 171.84 | 223.70 | 173.07 | 182.94 | 159.32 |
5 | CongressVR | 2.88 | 3.33 | 2.81 | 3.32 | 2.64 | 3.03 | 2.59 | 2.61 | 2.72 | 2.59 |
6 | Exactly-1 | 3.92 | 4.58 | 3.85 | 4.04 | 4.53 | 4.06 | 4.63 | 5.18 | 4.65 | 4.96 |
7 | Exactly-2 | 4.22 | 4.62 | 4.15 | 4.52 | 4.82 | 4.60 | 4.88 | 4.20 | 4.22 | 4.20 |
8 | StatlogH | 2.69 | 2.96 | 2.46 | 3.09 | 2.49 | 2.78 | 2.52 | 2.62 | 2.47 | 2.50 |
9 | IonosphereVS | 3.14 | 3.10 | 2.58 | 3.25 | 2.64 | 2.96 | 2.60 | 2.54 | 2.57 | 2.47 |
10 | KrvskpEW | 18.16 | 11.56 | 10.42 | 9.53 | 17.16 | 13.84 | 15.89 | 13.89 | 13.03 | 12.07 |
11 | Lymphography | 2.68 | 2.94 | 2.46 | 2.98 | 3.04 | 2.82 | 2.38 | 2.87 | 2.91 | 2.69 |
12 | M-of-n | 4.08 | 4.07 | 3.53 | 3.39 | 4.56 | 4.04 | 3.74 | 4.26 | 4.14 | 4.19 |
13 | Penglung | 7.65 | 3.10 | 2.51 | 2.49 | 2.56 | 4.13 | 2.55 | 2.50 | 2.50 | 2.45 |
14 | Semeion | 28.41 | 14.33 | 13.10 | 31.67 | 24.51 | 19.92 | 24.06 | 21.82 | 19.21 | 15.45 |
15 | SonarMR | 3.30 | 2.93 | 2.39 | 2.97 | 2.62 | 2.92 | 2.72 | 2.75 | 2.59 | 2.45 |
16 | Spectheart | 2.88 | 2.96 | 2.45 | 3.00 | 2.40 | 2.80 | 2.38 | 2.40 | 2.38 | 2.29 |
17 | 3T Endgame | 4.36 | 3.99 | 3.28 | 4.38 | 4.49 | 3.91 | 4.38 | 4.25 | 4.10 | 4.45 |
18 | Vote | 2.89 | 3.26 | 2.62 | 3.25 | 2.57 | 2.82 | 2.60 | 2.53 | 2.62 | 2.47 |
19 | WaveformV2 | 40.51 | 25.03 | 23.48 | 20.63 | 27.09 | 35.56 | 43.72 | 34.14 | 36.64 | 21.26 |
20 | Wine | 2.68 | 2.92 | 2.46 | 3.13 | 2.45 | 2.68 | 2.43 | 2.43 | 2.47 | 2.52 |
21 | Zoology | 2.79 | 4.85 | 2.33 | 3.25 | 2.24 | 2.66 | 2.30 | 2.21 | 2.19 | 2.15 |
Dataset | ALO | BSO | GA | GWO | PSO | bBOA | DA | SSA | ISSA | TFSSA | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | BreastCO | ||||||||||
2 | BreastCWD | ||||||||||
3 | Clean-1 | ||||||||||
4 | Clean-2 | ||||||||||
5 | CongressVR | ||||||||||
6 | Exactly-1 | ||||||||||
7 | Exactly-2 | ||||||||||
8 | StatlogH | ||||||||||
9 | IonosphereVS | ||||||||||
10 | KrvskpEW | ||||||||||
11 | Lymphography | ||||||||||
12 | M-of-n | ||||||||||
13 | Penglung | ||||||||||
14 | semeion | ||||||||||
15 | SonarMR | ||||||||||
16 | Spectheart | ||||||||||
17 | 3T Endgame | ||||||||||
18 | Vote | ||||||||||
19 | WaveformV2 | ||||||||||
20 | Wine | ||||||||||
21 | Zoology |
Dateset | No. Features | No. Instances | Area |
---|---|---|---|
COVID-19 | 15 | 1085 | Medical |
No. | Features | Feature Description |
---|---|---|
1 | code(id) | Patients’ identification numbers |
2 | location | The place where patients are situated |
3 | nationality | The country from which the patients come |
4 | gender | The patients’ gender |
5 | age | How old patients are |
6 | sym_on | When people first show symptoms |
7 | hosp_vis | The date patients visit hospital |
8 | vis_wuhan | Whether or not the patients visited Wuhan, CN |
9 | from_wuhan | Whether or not the patients from Wuhan, CN |
10 | symptom_1 | One of the symptoms encountered by patients |
11 | symptom_2 | One of the symptoms encountered by patients |
12 | symptom_3 | One of the symptoms encountered by patients |
13 | symptom_4 | One of the symptoms encountered by patients |
14 | symptom_5 | One of the symptoms encountered by patients |
15 | symptom_6 | One of the symptoms encountered by patients |
Algorithm | id | Age | Nationality | sym_on | from_wuhan |
---|---|---|---|---|---|
ALO | ✓ | ✓ | ✓ | ||
BSO | ✓ | ✓ | ✓ | ||
GA | ✓ | ✓ | ✓ | ||
GWO | ✓ | ✓ | ✓ | ||
PSO | ✓ | ✓ | ✓ | ||
bBOA | ✓ | ✓ | |||
DA | ✓ | ✓ | ✓ | ✓ | |
SSA | ✓ | ✓ | ✓ | ✓ | |
ISSA | ✓ | ✓ | ✓ | ✓ | |
TFSSA | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Gao, Y.; Song, Y. A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study. Symmetry 2023, 15, 316. https://doi.org/10.3390/sym15020316
Yang Q, Gao Y, Song Y. A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study. Symmetry. 2023; 15(2):316. https://doi.org/10.3390/sym15020316
Chicago/Turabian StyleYang, Qinwen, Yuelin Gao, and Yanjie Song. 2023. "A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study" Symmetry 15, no. 2: 316. https://doi.org/10.3390/sym15020316
APA StyleYang, Q., Gao, Y., & Song, Y. (2023). A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study. Symmetry, 15(2), 316. https://doi.org/10.3390/sym15020316