Theory of Quantum Mechanical Scattering in Hyperbolic Space
Abstract
:1. Introduction
2. The Scattering Problem in Hyperbolic Space
3. Scattering Length in Euclidean and Hyperbolic Spaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borisov, A.V.; Mamaev, I.S. (Eds.) Classical Dynamics in Non-Euclidean Spaces; Inst. Komp. Issled.: Moscow/Izhevsk, Russia, 2004; 348p. (In Russian) [Google Scholar]
- Shchepetilov, A.V. Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces; Springer: Berlin/Heidelberg, Germany, 2006; 284p. [Google Scholar]
- Jost, J. Riemannian Geometry and Geometric Analysis; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Red’kov, V.M. Fields in Riemannian Space and Lorentz Group; Belarussian Science: Minsk, Belarus, 2009. (In Russian) [Google Scholar]
- Schrödinger, E. A method of determining quantum mechanical eigenvalues and eigenfunctions. Proc. R. Irish. Acad. A 1940, 46, 9–16. [Google Scholar]
- Infeld, L. On a new treatment of some eigenvalue problems. Phys. Rev. 1941, 59, 737–747. [Google Scholar] [CrossRef]
- Infeld, L.; Schild, A. A note on the Kepler problem in a space of constant negative curvature. Phys. Rev. 1945, 67, 121–122. [Google Scholar] [CrossRef]
- Stevenson, A.F. A note on the Kepler problem in a spherical space, and the factorization method of solving eigenvalue problems. Phys. Rev. 1941, 59, 842–843. [Google Scholar] [CrossRef]
- Higgs, P. Dynamical symmetries in a spherical geometry. I. J. Phys. A Math. Gen. 1979, 12, 309–323. [Google Scholar] [CrossRef]
- Leemon, H. Dynamical symmetries in a spherical geometry. II. J. Phys. A Math. Gen. 1979, 12, 489–501. [Google Scholar] [CrossRef]
- Kurochkin, Y.A.; Otchik, V.S. Analog of the Runge—Lenz vector and energy spectrum in the Kepler problem on a three-dimensional sphere. Dokl. AN BSSR. 1979, 23, 987–990. (In Russian) [Google Scholar]
- Bogush, A.A.; Kurochkin, Y.A.; Otchik, V.S. On the quantum-mechanical Kepler problem in a three-dimensional Lobachevsky space. Dokl. AN BSSR. 1980, 24, 19–22. (In Russian) [Google Scholar]
- Bonatsos, D.; Daskaloyannis, C.; Faessler, A.; Raychev, P.P.; Roussev, R.P. Quantum algebraic description of vibrational and transitional nuclear spectra. Phys. Rev. C 1994, 50, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Baldin, A.A.; Baldina, E.G.; Kladnitskaya, E.N.; Rogachevsky, O.V. Analysis of experimental data on relativistic nuclear collisions in Lobachevsky space. Phys. Part. Nucl. Lett. 2004, 1, 171–177. [Google Scholar]
- Baldina, E.; Baldin, A. Lobachevsky space in analysis of relativistic nuclear interactions. New phenomenon—directed nuclear radiation. J. Instrum. 2020, 15, C04041. [Google Scholar] [CrossRef]
- Suzuki, N.; Biyajima, M. Analysis of transverse momentum distributions observed at RHIC by a stochastic model in Hyperbolic space. Acta Phys. Polon. B 2004, 35, 283–288. [Google Scholar]
- Izmestev, A.A. Exactly solvable potential model for quarkonia. Sov. J. Nucl. Phys. 1990, 52, 1068–1076. (In Russian) [Google Scholar]
- Gritzev, V.; Kurochkin, Y.A. Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature. Phys. Rev. B 2001, 64, 035308. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Rañada, M.F.; Santander, M. The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach. II. J. Math. Phys. 2011, 53, 102109. [Google Scholar] [CrossRef] [Green Version]
- Salerno, M.; Filippo, S.D.; Tufino, E.; Enolskii, V.Z. Integrable systems on a sphere as models for quantum dots. J. Phys. A Math. Gen. 2001, 34, 2311–2317. [Google Scholar] [CrossRef]
- Bessis, N.; Bessis, G.; Shamseddine, R. Space-curvature effects in atomic fine and hyperfine structure calculations. Phys. Rev. A 1984, 29, 2375–2388. [Google Scholar] [CrossRef]
- Bessis, N.; Bessis, G.; Roux, D. Space-curvature effects in the interaction between atoms and external fields: Zeeman and Stark effects in a space of constant positive curvature. Phys. Rev. A 1986, 33, 324–336. [Google Scholar] [CrossRef]
- Kurochkin, Y.A.; Shoukavy, D.V. The tunnel-effect in the Lobachevsky space. Acta Phys. Polon. B 2006, 37, 2423–2432. [Google Scholar]
- Chernikov, N.A. Lobachevsky Geometry and Relativistic Mechanics. Fiz. Elem. Chastits At. Yadra 1973, 4, 773–810. [Google Scholar]
- Berezin, A.V.; Kurochkin, Y.A.; Tolkachev, E.A. Quaternions in Relativistic Physics; Science and Technology: Minsk, Belarus, 1989; 197p. (In Russian) [Google Scholar]
- Fiziev, P.P. Applications of Lobachevsky Geometry to the Relativistic Two-Body Problem. arXiv 2004, arXiv:hep-th/0405219. [Google Scholar]
- Lax, P.D.; Phillips, R. Scattering Theory for Automorphic Functions; Academic Press: Boston, MA, USA, 1989; 335p. [Google Scholar]
- Kurochkin, Y.A.; Otchik, V.S.; Shoukavy, D.V. On the quantum-mechanical scattering problem in the Lobachevsky space. Rom. J. Phys. 2005, 50, 37–44. [Google Scholar]
- Bogush, A.A.; Kurochkin, Y.A.; Otchik, V.S. Coulomb scattering in the Lobachevsky space. NPCS 2003, 6, 894–897. [Google Scholar]
- Kurochkin, Y.A.; Shoukavy, D.V. Regge trajectories of the Coulomb potential in the space of constant negative curvature 1S3. J. Math. Phys. 2006, 47, 022103. [Google Scholar] [CrossRef]
- Shapiro, I.S. Expansion of the scattering amplitude in relativistic spherical functions. Phys. Lett. 1962, 1, 253–255. [Google Scholar] [CrossRef]
- Kadyshevskii, V.G.; Mir-Kasimov, R.M.; Skachkov, N.B. Three-Dimensional Formulation of the Relativistic Two-Body Problem. In Particles and Nuclei; Bogolyubov, N.N., Baldin, A.M., Van Hieu, N., Solov’ev, V.G., Eds.; Springer: Boston, MA, USA, 1973. [Google Scholar] [CrossRef]
- Newton, R.G. Scattering Theory of Waves and Particles; McGraw-Hill: New York, NY, USA, 1966; 274p. [Google Scholar]
- Bethe, G.; Morrison, F. Elementary Theory of the Nucleus, 2nd ed.; Wiley: New York, NY, USA, 1956; 374p. [Google Scholar]
- Davydov, A.S. Quantum Mechanics; Nauka: Moscow, Russia, 1973; 703p. [Google Scholar]
- Kurochkin, Y.A.; Otchik, V.S.; Shaikovskaya, N.D.; Shoukavy, D.V. Quantum-Mechanical Scattering Problem in Lobachevsky Space at Low Energies. Nonlinear Phenom. Complex Syst. 2022, 25, 245–253. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Kindle Edition; Butterworth-Heinemann: Oxford, UK, 1963; 688p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkovszky, L.L.; Kurochkin, Y.A.; Otchik, V.S.; Pista, P.F.; Shaikovskaya, N.D.; Shoukavy, D.V. Theory of Quantum Mechanical Scattering in Hyperbolic Space. Symmetry 2023, 15, 377. https://doi.org/10.3390/sym15020377
Jenkovszky LL, Kurochkin YA, Otchik VS, Pista PF, Shaikovskaya ND, Shoukavy DV. Theory of Quantum Mechanical Scattering in Hyperbolic Space. Symmetry. 2023; 15(2):377. https://doi.org/10.3390/sym15020377
Chicago/Turabian StyleJenkovszky, L. L., Y. A. Kurochkin, V. S. Otchik, P. F. Pista, N. D. Shaikovskaya, and D. V. Shoukavy. 2023. "Theory of Quantum Mechanical Scattering in Hyperbolic Space" Symmetry 15, no. 2: 377. https://doi.org/10.3390/sym15020377
APA StyleJenkovszky, L. L., Kurochkin, Y. A., Otchik, V. S., Pista, P. F., Shaikovskaya, N. D., & Shoukavy, D. V. (2023). Theory of Quantum Mechanical Scattering in Hyperbolic Space. Symmetry, 15(2), 377. https://doi.org/10.3390/sym15020377