New Generalization of Metric-Type Spaces—Strong Controlled
Abstract
:1. Introduction
2. Preliminary Assertions
- 1.
- if and only if ;
- 2.
- ;
- 3.
- ,
- 1.
- if, and only if ;
- 2.
- ;
- 3.
- ,
- if then Conversely, if then
- (1) This affirms that the sequence converges to arbitrary x that belongs to if ∀ , ∃ such that for every Here, the
- (2) The sequence is said to be Cauchy if ∀, ∃ where for every
- (3) The (CSbMS) is said to be complete if for all Cauchy sequences, it is convergent.
- (i) An open ball is
- (ii) The mapping is called continuous at if ∀, ∃, satisfying .
3. Main Results
4. Application
4.1. Polynomial Equations
4.2. Linear System of Equations
4.3. Fractional Differential Equation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shatanawi, W. On -compatible mappings and common coupled coincidence point in cone metric spaces. ScienceDirect 2012, 25, 6. [Google Scholar] [CrossRef]
- Shatanawi, W.; Rajić, V.Ć.; Radenović, S.; Al-Rawashdeh, A. Mizoguchi-Takahashi, Type Theorems in Tvs-Cone Metric Spaces, Fixed Point Theory and Applications; Springer Open: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Al-Rawashdeh, A.; Hassen, A.; Abdelbasset, F.; Sehmim, S.; Shatanawi, W. On common fixed points for α – F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [Google Scholar] [CrossRef]
- Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 2011, 1–15. [Google Scholar] [CrossRef]
- Shatanawi, W. Some fixed point results for generalized ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 2012, 45, 520–526. [Google Scholar] [CrossRef]
- Bakhtin, I. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
- Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891. [Google Scholar]
- Afshari, H.; Atapour, M.; Aydi, H. Generalized α − ψ-Geraghty multivalued mappings on b-metric spaces endowed with a graph. Twms J. Appl. Eng. Math. 2017, 7, 248–260. [Google Scholar]
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60. [Google Scholar]
- Aydi, H.; Karapinar, E.; Bota, M.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Aydi, H.; Banković, R.; Mitrović, I.; Nazam, M. Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. 2018, 2018, 4745764. [Google Scholar] [CrossRef]
- Karapınar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Mlaiki, N.; Mukheimer, A.; Rohen, Y.; Souayah, N.; Abdeljawad, T. Fixed point theorems for α − ψ-contractive mapping in Sb-metric spaces. J. Math. Anal. 2017, 8, 40–46. [Google Scholar]
- Souayah, N.; Mlaiki, N.; Mrad, M. The GM—contraction principle for mappings on M—metric spaces endowed with a graph and fixed point theorems. IEEE Access 2018, 6, 25178–25184. [Google Scholar] [CrossRef]
- Souayah, N.; Mlaiki, N. A fixed point theorem in Sb metric spaces. J. Math. Comput. Sci. 2016, 16, 131–139. [Google Scholar] [CrossRef]
- Ameer, E.; Arshad, M.; Shatanawi, W. Common fixed point results for generalized α*−ψ−contraction multivalued mappings in b−metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3069–3086. [Google Scholar] [CrossRef]
- Shatanawi, W. Fixed and Common Fixed Point for Mapping Satisfying Some Nonlinear Contraction in b−metric Spaces. J. Math. Anal. 2016, 7, 1–12. [Google Scholar]
- Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef]
- Roshan, J.R.; Parvaneh, V.; Sedghi, S.; Shobkolaei, N.; Shatanawi, W. Common Fixed Points of Almost Generalized (ψ,φ)s−Contractive Mappings in Ordered b−Metric Spaces. Fixed Point Theory Appl. 2013, 159, 1–23. [Google Scholar]
- Ghasab, E.L.; Chaharpashlou, R.; Lopes, A.M. Solving a System of Integral Equations in Rectangular Menger Probabilistic Metric Spaces and Rectangular Menger Probabilistic b-Metric Spaces. Symmetry 2023, 15, 70. [Google Scholar] [CrossRef]
- Bota, M.-F.; Micula, S. Ulam–Hyers Stability via Fixed Point Results for Special Contractions in b-Metric Spaces. Symmetry 2022, 14, 2461. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X. Relation-Theoretic Coincidence and Common Fixed Point Results in Extended Rectangular b-Metric Spaces with Applications. Symmetry 2022, 14, 1588. [Google Scholar] [CrossRef]
- Doan, H. A new type of Kannan’s fixed point theorem in strong b-metric spaces. Aims Math. 2021, 6, 7895–7908. [Google Scholar] [CrossRef]
- Kamran, T.; Samreen, M.; UL Ain, Q. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]
- Patel, D.; Abdeljawad, T.; Gopal, D. Common fixed points of generalized Meir-Keeler α-contractions. Fixed Point Theory Appl. 2013, 2013, 260. [Google Scholar] [CrossRef]
- Abdeljawad, T. Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 2013, 19. [Google Scholar] [CrossRef]
- Abduljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1977, 62, 344–348. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santina, D.; Mior Othman, W.A.; Wong, K.B.; Mlaiki, N. New Generalization of Metric-Type Spaces—Strong Controlled. Symmetry 2023, 15, 416. https://doi.org/10.3390/sym15020416
Santina D, Mior Othman WA, Wong KB, Mlaiki N. New Generalization of Metric-Type Spaces—Strong Controlled. Symmetry. 2023; 15(2):416. https://doi.org/10.3390/sym15020416
Chicago/Turabian StyleSantina, Dania, Wan Ainun Mior Othman, Kok Bin Wong, and Nabil Mlaiki. 2023. "New Generalization of Metric-Type Spaces—Strong Controlled" Symmetry 15, no. 2: 416. https://doi.org/10.3390/sym15020416
APA StyleSantina, D., Mior Othman, W. A., Wong, K. B., & Mlaiki, N. (2023). New Generalization of Metric-Type Spaces—Strong Controlled. Symmetry, 15(2), 416. https://doi.org/10.3390/sym15020416