Noncommutative Correction to the Entropy of Charged BTZ Black Hole
Abstract
:1. Introduction
2. Noncommutative QBTZ
2.1. Infinitesimal Diffeomorphisms and Hopf Algebra
2.2. Deformed Symmetries, Twist and Noncommutativity
2.3. Twisting the Algebra of Exterior Forms
2.4. Twisting the Geometry and NC Gravity
2.5. Angular Twist
2.6. Noncommutative QBTZ
2.7. NC Klein–Gordon Equation in Background
3. Black Hole Entropy in the Brick Wall Model
3.1. WKB and the Density of States
3.2. Entropy of NCQBTZ
4. Some Limit Cases
4.1. Limit Case
4.2. Limit Case
4.3. The Almost BTZ Limit
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Entropy in Terms of the Brick Wall Cutoff h
Appendix B. Coefficients vkn and wkn
References
- Einstein, A. Die Grundlage der allgemeinen Relativitatstheorie. Ann. Der Phys. 1916, 49, 769–822. [Google Scholar] [CrossRef]
- Schwarzschild, K. Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitz. K. Preuss. Akad. Wiss. 1916, 7, 189–196. [Google Scholar]
- Bekenstein, J.D. Black holes and the second law. Lett. Nuovo Cim. 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in: Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Thorne, K.S.; Zurek, W.H. Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole. Phys. Rev. Lett. 1985, 54, 2171. [Google Scholar]
- ’t Hooft, G. On the Quantum Structure of a Black Hole. Nucl. Phys. B 1985, 256, 727–745. [Google Scholar] [CrossRef]
- ’t Hooft, G. The Scattering matrix approach for the quantum black hole: An Overview. Int. J. Mod. Phys. A 1996, 11, 4623–4688. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic Origin of the Bekenstein-Hawking Entropy. Phys. Lett. 1996, B 379, 99. [Google Scholar] [CrossRef]
- Sen, A. Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates. Gen. Rel. Grav. 2012, 44, 1207. [Google Scholar]
- Sen, A. Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions. JHEP 2013, 2013, 156. [Google Scholar] [CrossRef]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum Geometry and Black Hole Entropy. Phys. Rev. Lett. 1998, 80, 904. [Google Scholar] [CrossRef]
- Strominger, A. Black Hole Entropy from Near-Horizon Microstates. JHEP 1998, 1998, JHEP02. [Google Scholar] [CrossRef]
- Carlip, S. Entropy from Conformal Field Theory at Killing Horizons. Class. Quant. Grav. 1999, 16, 3327. [Google Scholar] [CrossRef] [Green Version]
- Fursaev, D.V.; Solodukhin, S.N. On one loop renormalization of black hole entropy. Phys. Lett. B 1996, 365, 51–55. [Google Scholar] [CrossRef]
- Carlip, S. Logarithmic corrections to black hole entropy, from the Cardy formula. Class. Quantum Grav. 2000, 17, 4175. [Google Scholar] [CrossRef]
- Gupta, K.S.; Sen, S. Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach. Phys. Lett. 2002, B 526, 121. [Google Scholar] [CrossRef]
- Mukherji, S.; Pal, S.S. Logarithmic corrections to black hole entropy and AdS/CFT correspondence. JHEP 2002, 05, 026. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Logarithmic terms in entropy of Schwarzschild black holes in higher loops. Phys. Lett. 2020, B 802, 135235. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Entanglement entropy of black holes. Living Rev. Rel. 2011, 14, 8. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Y. Logarithmic correction to black hole entropy from the nonlocality of quantum gravity. Phys. Rev. D 2022, 105, 044013. [Google Scholar] [CrossRef]
- Calmet, X.; Kuipers, F. Quantum gravitational corrections to the entropy of a Schwarzschild black hole. Phys. Rev. D 2021, 104, 066012. [Google Scholar] [CrossRef]
- Delgado, R.C. Quantum gravitational corrections to the entropy of a Reissner–Nordström black hole. Eur. Phys. J. C 2022, 82, 272. [Google Scholar] [CrossRef]
- Gupta, K.S.; Harikumar, E.; Juric, T.; Meljanac, S.; Samsarov, A. Effects of Noncommutativity on the Black Hole Entropy. Adv. High Energy Phys. 2014, 2014, 139172. [Google Scholar] [CrossRef]
- Jurić, T.; Samsarov, A. Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry. Phys. Rev. D 2016, 93, 104033. [Google Scholar] [CrossRef]
- Gupta, K.S.; Jurić, T.; Samsarov, A.; Smolić, I. Noncommutativity and logarithmic correction to the black hole entropy. arXiv 2022, arXiv:2209.07168. [Google Scholar] [CrossRef]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. Space-time quantization induced by classical gravity. Phys. Lett. B 1994, 331, 39–44. [Google Scholar] [CrossRef]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The Quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187–220. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- van Suijlekom, W.D. Noncommutative Geometry and Particle Physics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A.; van Suijlekom, W.D. Noncommutativity and Physics: A non-technical review. arXiv 2022, arXiv:2207.10901. [Google Scholar]
- Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rept. 2003, 378, 207–299. [Google Scholar] [CrossRef]
- Aschieri, P.; Dimitrijevic, M.; Kulish, P.; Lizzi, F.; Wess, J. Noncommutative spacetimes: Symmetries in noncommutative geometry and field theory. Lect. Notes Phys. 2009, 774, 1–199. [Google Scholar]
- Aschieri, P.; Castellani, L. Noncommutative Gravity Solutions. J. Geom. Phys. 2010, 60, 375–393. [Google Scholar] [CrossRef]
- Schenkel, A. Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes. Ph.D. Thesis, Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2011. [Google Scholar]
- Aschieri, P.; Blohmann, C.; Dimitrijevic, M.; Mayer, F.; Schupp, P.; Wess, J. A Gravity Theory on Noncommutative Spaces. Class. Quant. Grav. 2005, 22, 3511. [Google Scholar] [CrossRef]
- Aschieri, P.; Dimitrijevic, M.; Meyer, F.; Wess, J. Noncommutative Geometry and Gravity. Class. Quant. Grav. 2006, 3, 1883. [Google Scholar] [CrossRef]
- Ohl, T.; Schenkel, A. Symmetry Reduction in Twisted Noncommutative Gravity with Applications to Cosmology and Black Holes. JHEP 2009, 0901, 084. [Google Scholar] [CrossRef] [Green Version]
- Ohl, T.; Schenkel, A. Cosmological and Black Hole Spacetimes in Twisted Noncommutative Gravity. JHEP 2009, 0910, 052. [Google Scholar] [CrossRef]
- Moffat, J.W. Noncommutative quantum gravity. Phys. Lett. 2000, B 491, 345. [Google Scholar] [CrossRef]
- Chamseddine, A.H. Complexified Gravity in Noncommutative Spaces. Commun. Math. Phys. 2001, 218, 283. [Google Scholar]
- Nishino, H.; Rajpoot, S. Teleparallel Complex Gravity as Foundation for Noncommutative Gravity. Phys. Lett. 2002, B 532, 334. [Google Scholar]
- Balachandran, A.P.; Govindarajan, T.R.; Gupta, K.S.; Kurkcuoglu, S. Noncommutative Two Dimensional Gravities. Class. Quant. Grav. 2006, 23, 5799. [Google Scholar] [CrossRef]
- Harikumar, E.; Rivelles, V.O. Noncommutative Gravity. Class. Quant. Grav. 2006, 23, 7551. [Google Scholar]
- Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Phase-Space Noncommutative Quantum Cosmology. Phys. Rev. D 2008, 78, 023516. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Black Holes and Phase Space Noncommutativity. Phys. Rev. D 2009, 80, 124038. [Google Scholar] [CrossRef]
- Bastos, C.; Bertolami, O.; Dias, N.C.; Prata, J.N. Non-Canonical Phase-Space Noncommutativity and the Kantowski-Sachs singularity for Black Holes. Phys. Rev. D 2011, 84, 024005. [Google Scholar] [CrossRef]
- Dolan, B.P.; Gupta, K.S.; Stern, A. Noncommutative BTZ black hole and discrete time. Class. Quant. Grav. 2007, 24, 1647. [Google Scholar] [CrossRef]
- Dolan, B.P.; Gupta, K.S.; Stern, A. Noncommutativity and quantum structure of spacetime. J. Phys. Conf. Ser. 2009, 174, 012023. [Google Scholar] [CrossRef]
- Banados, M.; Teitelboim, C.; Zanelli, J. Black hole in three-dimensional spacetime. Phys. Rev. Lett. 1992, 69, 1849. [Google Scholar] [CrossRef] [PubMed]
- Chaichian, M.; Demichev, A.; Presnajder, P.; Tureanu, A. Space-Time Noncommutativity, Discreteness of Time and Unitarity. Eur. Phys. J. 2001, C 20, 767. [Google Scholar] [CrossRef]
- Chaichian, M.; Demichev, A.; Presnajder, P.; Tureanu, A. Noncommutative quantum field theory: Unitarity and discrete time. Phys. Lett. 2001, B 515, 426. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H.; Tolstoy, V.N. Q deformation of Poincare algebra. Phys. Lett. 1991, B 264, 331. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H. New quantum Poincare algebra and k deformed field theory. Phys. Lett. 1992, B 293, 344. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H. Quantum kappa Poincare in any dimension. Phys. Lett. 1994, B 329, 189. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H.; Zakrzewski, W.J. Classical and Quantum Mechanics of Free k-Relativistic Systems. Ann. Phys. 1995, 243, 90. [Google Scholar] [CrossRef]
- Schupp, P.; Solodukhin, S. Exact Black Hole Solutions in Noncommutative Gravity. arXiv 2009, arXiv:0906.2724. [Google Scholar]
- Ciric, M.D.; Konjik, N.; Kurkov, M.A.; Lizzi, F.; Vitale, P. Noncommutative field theory from angular twist. Phys. Rev. D 2018, 98, 085011. [Google Scholar] [CrossRef]
- Ćirić, M.D.; Konjik, N.; Samsarov, A. Noncommutative scalar quasinormal modes of the Reissner–Nordström black hole. Class. Quant. Grav. 2018, 35, 175005. [Google Scholar] [CrossRef]
- Ćirić, M.D.; Konjik, N.; Samsarov, A. Noncommutative scalar field in the nonextremal Reissner-Nordström background: Quasinormal mode spectrum. Phys. Rev. D 2020, 101, 116009. [Google Scholar] [CrossRef]
- Ćirić, M.D.; Konjik, N.; Samsarov, A. Search for footprints of quantum spacetime in black hole QNM spectrum. arXiv 2019, arXiv:1910.13342. [Google Scholar]
- Ćirić, M.D.; Konjik, N.; Samsarov, A. Propagation of spinors on a noncommutative spacetime: Equivalence of the formal and the effective approach. arXiv 2022, arXiv:2208.06069. [Google Scholar]
- Carlip, S. The (2+1)-Dimensional black hole. Class. Quant. Grav. 1995, 12, 2853–2880. [Google Scholar] [CrossRef]
- Martinez, C.; Teitelboim, C.; Zanelli, J. Charged rotating black hole in three space-time dimensions. Phys. Rev. D 2000, 61, 104013. [Google Scholar] [CrossRef] [Green Version]
- Clement, G. Spinning charged BTZ black holes and selfdual particle - like solutions. Phys. Lett. B 1996, 367, 70–74. [Google Scholar] [CrossRef]
- Unver, O.; Gurtug, O. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes. Phys. Rev. D 2010, 82, 084016. [Google Scholar] [CrossRef]
- Wang, B.; Lin, C.Y.; Abdalla, E. Quasinormal modes of Reissner-Nordstrom anti-de Sitter black holes. Phys. Lett. B 2000, 481, 79–88. [Google Scholar] [CrossRef]
- Witten, E. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 1988, 311, 46. [Google Scholar] [CrossRef]
- Witten, E. Three-Dimensional Gravity Revisited. arXiv 2007, arXiv:0706.3359. [Google Scholar]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Chaichian, M.; Kulish, P.P.; Nishijima, K.; Tureanu, A. On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT. Phys. Lett. B 2004, 604, 98–102. [Google Scholar] [CrossRef]
- Aschieri, P.; Lizzi, F.; Vitale, P. Twisting all the way: From Classical Mechanics to Quantum Fields. Phys. Rev. D 2008, 77, 025037. [Google Scholar]
- Aschieri, P. Lectures on Hopf Algebras, Quantum Groups and Twists. arXiv 2007, arXiv:hep-th/0703013. [Google Scholar]
- Jurić, T.; Meljanac, S.; Pikutić, D.; Štrajn, R. Toward the classification of differential calculi on κ-Minkowski space and related field theories. JHEP 2015, 2015, 55. [Google Scholar] [CrossRef]
- Juric, T.; Meljanac, S.; Pikutic, D. Realizations of κ-Minkowski space, Drinfeld twists and related symmetry algebras. Eur. Phys. J. C 2015, 75, 528. [Google Scholar] [CrossRef]
- Gupta, K.S.; Meljanac, S.; Samsarov, A. Quantum statistics and noncommutative black holes. Phys. Rev. 2012, D 85, 045029. [Google Scholar] [CrossRef]
- Schraml, S.; Schupp, P.; Wess, J. Construction of non-Abelian gauge theories on noncommutative spaces. Eur. Phys. J. C 2001, 21, 383. [Google Scholar]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP 1999, 1999, 32. [Google Scholar] [CrossRef]
- Aschieri, P.; Castellani, L. Noncommutative gravity coupled to fermions: Second order expansion via Seiberg-Witten map. JHEP 2012, 1207, 184. [Google Scholar] [CrossRef] [Green Version]
- Demers, J.G.; Lafrance, R.; Myers, R.C. Black hole entropy without brick walls. Phys. Rev. D 1995, 52, 2245–2253. [Google Scholar] [CrossRef]
- Bombelli, L.; Koul, R.K.; Lee, J.; Sorkin, R.D. Quantum source of entropy for black holes. Phys. Rev. D 1986, 34, 373. [Google Scholar] [CrossRef]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Neiman, Y. Wald entropy formula and loop quantum gravity. Phys. Rev. D 2014, 90, 084054. [Google Scholar] [CrossRef]
- Das, S.; Shankaranarayanan, S.; Sur, S. Black hole entropy from entanglement: A review. In Horizons in World Physics; Everett, M., Pedroza, L., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; Volume 268. [Google Scholar]
- Sarkar, S.; Shankaranarayanan, S.; Sriramkumar, L. Sub-leading contributions to the black hole entropy in the brick wall approach. Phys. Rev. D 2008, 78, 024003. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Entropy function approach to charged BTZ black hole. Gen. Rel. Grav. 2010, 42, 1919–1934. [Google Scholar] [CrossRef]
- Witten, E. Why Does Quantum Field Theory in Curved Spacetime Make Sense? And What Happens to the Algebra of Observables in the Thermodynamic Limit? arXiv 2021, arXiv:2112.11614. [Google Scholar]
- Longo, R.; Witten, E. A note on continuous entropy. arXiv 2022, arXiv:2202.03357. [Google Scholar]
- Chandrasekaran, V.; Longo, R.; Penington, G.; Witten, E. An Algebra of Observables for de Sitter Space. arXiv 2022, arXiv:2206.10780. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurić, T.; Požar, F. Noncommutative Correction to the Entropy of Charged BTZ Black Hole. Symmetry 2023, 15, 417. https://doi.org/10.3390/sym15020417
Jurić T, Požar F. Noncommutative Correction to the Entropy of Charged BTZ Black Hole. Symmetry. 2023; 15(2):417. https://doi.org/10.3390/sym15020417
Chicago/Turabian StyleJurić, Tajron, and Filip Požar. 2023. "Noncommutative Correction to the Entropy of Charged BTZ Black Hole" Symmetry 15, no. 2: 417. https://doi.org/10.3390/sym15020417
APA StyleJurić, T., & Požar, F. (2023). Noncommutative Correction to the Entropy of Charged BTZ Black Hole. Symmetry, 15(2), 417. https://doi.org/10.3390/sym15020417