A Comparative Analysis of Fractional-Order Fokker–Planck Equation
Abstract
:1. Introduction
2. Basic Definitions
2.1. Definition
2.2. Definition
2.3. Definition
2.4. Definition
3. Methodology of NITM
4. Methodology of HPTM
4.1. Example
4.2. Example
4.3. Example
4.4. Example
4.5. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yépez-Martínez, H.; Gómez-Aguilar, F.; Sosa, I.O.; Reyes, J.M.; Torres-Jiménez, J. The Fengs first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Rev. Mex. Fis. 2016, 62, 310–316. [Google Scholar]
- Baleanu, D.; Machado, J.A.; Luo, A.C. Fractional Dynamics and Control; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Magin Richard, L. Fractional Calculus in Bioengineering; Begell House Redding: Chicago, IL, USA, 2006. [Google Scholar]
- Ellahi, R.; Alamri, S.Z.; Basit, A.; Majeed, A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J. Taibah Univ. Sci. 2018, 12, 476–482. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar]
- Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and Caputo derivatives. Discret. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef]
- Kirane, M.; Abdeljabbar, A. Nonexistence of Global Solutions of Systems of Time Fractional Differential equations posed on the Heisenberg group. Math. Methods Appl. Sci. 2022, 45, 7336–7345. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Khan, A.; Ababneh, O.Y.; Botmart, T. Fractional view analysis of Kersten-Krasil’shchik coupled KdV-mKdV systems with non-singular kernel derivatives. AIMS Math. 2022, 7, 18334–18359. [Google Scholar] [CrossRef]
- Rahman, Z.; Abdeljabbar, A.; Harun-Or-Roshid; Ali, M.Z. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal Fract. 2022, 6, 444. [Google Scholar] [CrossRef]
- Cuahutenango-Barro, B.; Taneco-Hernández, M.A.; Gómez-Aguilar, J.F. On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel. Chaos Solitons Fractals 2018, 115, 283–299. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Miranda-Hernández, M.; López-López, M.G.; Alvarado-Martínez, V.M.; Baleanu, D. Modeling and simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 115–127. [Google Scholar] [CrossRef]
- Eftekhari, T.; Rashidinia, J. A new operational vector approach for time-fractional subdiffusion equations of distributed order based on hybrid functions. Math. Methods Appl. Sci. 2022, 46, 388–407. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Alyousef, H.A.; El-Tantawy, S.A.; Khan, A.; Wyal, N. Solving Fractional-Order Diffusion Equations in a Plasma and Fluids via a Novel Transform. J. Funct. Spaces 2022, 2022, 1899130. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xue, J.; Wong, K. Channel Prediction Using Ordinary Differential Equations for MIMO systems. IEEE Trans. Veh. Technol. 2022, 1–9. [Google Scholar] [CrossRef]
- Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing Neural Network for Pseudoinversionof an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition. Mathematics 2022, 10, 1208. [Google Scholar] [CrossRef]
- Chen, H.; Li, S. Multi-Sensor Fusion by CWT-PARAFAC-IPSO-SVM for Intelligent Mechanical Fault Diagnosis. Sensors 2022, 22, 3647. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Liu, D.; Jia, W.; Huang, H. Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dyn. 2013, 74, 745–753. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Ford, N.J.; Simpson, A.C. The numerical solution of fractional differential equations: Speed versus accuracy. Numer. Algorithms 2001, 26, 333–346. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Yu, J. Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- Shah, N.A.; Dassios, I.; Chung, J.D. A decomposition method for a fractional order multi-dimensional telegraph equation via the Elzaki transform. Symmetry 2021, 13, 8. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. A new integral transform: ARA transform and its properties and applications. Symmetry 2020, 12, 925. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Fract. Differ. Appl. 2015, 2, 731–785. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of the new fractional derivative without singular kernel. Fract. Differ. Appl. 2015, 2, 87–92. [Google Scholar]
- Zidan, A.M.; Khan, A.; Shah, R.; Alaoui, M.K.; Weera, W. Evaluation of time-fractional Fisher’s equations with the help of analytical methods. AIMS Math. 2022, 7, 18746–18766. [Google Scholar] [CrossRef]
- Kbiri Alaoui, M.; Nonlaopon, K.; Zidan, A.M.; Khan, A.; Shah, R. Analytical investigation of fractional order cahn-hilliard and gardner equations using two novel techniques. Mathematics 2022, 10, 1643. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Shah, R.; Nonlaopon, K. Analytical investigation of fractional order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Alyobi, S.; Shah, R.; Khan, A.; Shah, N.A.; Nonlaopon, K. Fractional Analysis of Nonlinear Boussinesq Equation under Atangana-Baleanu-Caputo Operator. Symmetry 2022, 14, 2417. [Google Scholar] [CrossRef]
- Fan, X.; Wei, G.; Lin, X.; Wang, X.; Si, Z.; Zhang, X.; Zhao, W. Reversible Switching of Interlayer Exchange Coupling through Atomically Thin VO2 via Electronic State Modulation. Matter 2020, 2, 1582–1593. [Google Scholar] [CrossRef]
- Meng, F.; Pang, A.; Dong, X.; Han, C.; Sha, X.; Jing, N.; Na, J. H-infinity Optimal Performance Design of an Unstable Plant under Bode Integral Constraint. Complexity 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Meng, F.; Wang, D.; Yang, P.; Xie, G.; Cutberto, R.; Romero-Melendez, C. Application of Sum of Squares Method in Nonlinear H Control for Satellite Attitude Maneuvers. Complexity 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z. Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 2016, 260, 162–196. [Google Scholar] [CrossRef]
- Liu, P.; Shi, J.; Wang, Z.-A. Pattern formation of the attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst. B 2013, 18, 2597–2625. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Risken, H. The FokkerPlanck Equation: Method of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Chandresekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [Google Scholar] [CrossRef]
- Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 1940, 7, 284–304. [Google Scholar] [CrossRef]
- Fokker, A. The median energy of rotating electrical dipoles in radiation fields. Annalen Der Physik 1914, 43, 810–820. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Construction of solitary solution and compaction-like solution by variational iteration method. Chaos Solitons Fractals 2006, 29, 108–113. [Google Scholar] [CrossRef]
- Jumarie, G. Fractional Brownian motions via random walk in the complex plane and via fractional derivative, comparison and further results on their Fokker–Planck equations. Chaos Solitons Fractals 2004, 22, 907–925. [Google Scholar] [CrossRef]
- Kamitani, Y.; Matsuba, I. Self-similar characteristics of neural networks based on Fokker–Planck equation. Chaos Solitons Fractals 2004, 20, 329–335. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, F.Y.; Liang, J.R.; Qiu, W.Y. Stretched Gaussian asymptotic behavior for fractional Fokker–Planck equation on fractal structure in external force fields. Chaos Solitons Fractals 2004, 20, 581–586. [Google Scholar] [CrossRef]
- Zak, M. Expectation-based intelligent control. Chaos Solitons Fractals 2006, 28, 616–626. [Google Scholar] [CrossRef]
- Risken, H. Fokker–Planck Equation; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–95. [Google Scholar]
- Herau, F. Short and long time behavior of the Fokker–Planck equation in a confining potential and applications. J. Funct. Anal. 2007, 244, 95–118. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Bhalekar, V.S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Comput. Math. Appl. 2010, 59, 1801–1809. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. New iterative method: Application to partial differential equations. Appl. Math. Comput. 2008, 203, 778–783. [Google Scholar] [CrossRef]
- Jafari, H. Iterative Methods for Solving System of Fractional Differential Equations. Ph.D. Thesis, Pune University, Pune, India, 2006. [Google Scholar]
- Bhalekar, S.; Daftardar-Gejji, V. Solving evolution equations using a new iterative method. Numer. Methods Partial. Differ. Equ. 2010, 26, 906–916. [Google Scholar] [CrossRef]
- He, J.-H. The homotopy perturbation method nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151, 287–292. [Google Scholar] [CrossRef]
- He, H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Alsharif, A.M.; Zidan, A.M.; Khan, A.; Hamed, Y.S.; Shah, R. Numerical investigation of fractional order Swift-Hohenberg equations via a novel transform. Symmetry 2021, 13, 1263. [Google Scholar] [CrossRef]
0.5 | 8.48379150 | 1.5700000 | 4.09610800 | 1.5700000 | |
1 | 1.69675830 | 6.3000000 | 1.63844300 | 6.3000000 | |
1.5 | 2.54513740 | 1.4100000 | 3.68649700 | 1.4100000 | |
2 | 3.39351660 | 2.5200000 | 6.55377200 | 2.5200000 | |
2.5 | 4.24189580 | 3.9300000 | 1.02402690 | 3.9300000 | |
0.001 | 3 | 5.09027490 | 5.6700000 | 1.47459870 | 5.6700000 |
3.5 | 5.93865400 | 7.7000000 | 2.00709300 | 7.7000000 | |
4 | 6.78703320 | 1.0100000 | 2.62150900 | 1.0100000 | |
4.5 | 7.63541240 | 1.2700000 | 3.31784700 | 1.2700000 | |
5 | 8.48379150 | 1.5700000 | 4.09610800 | 1.5700000 | |
0.5 | 1.27076980 | 6.2500000 | 6.81188800 | 6.2500000 | |
1 | 2.54153960 | 2.5000000 | 2.72475500 | 2.5000000 | |
1.5 | 3.81230940 | 5.6300000 | 6.13069900 | 5.6300000 | |
2 | 5.08307920 | 1.0000000 | 1.08990200 | 1.0000000 | |
2.5 | 6.35384900 | 1.5630000 | 1.70297190 | 1.5630000 | |
0.002 | 3 | 7.62461880 | 2.2500000 | 2.45227950 | 2.2500000 |
3.5 | 8.89538860 | 3.0600000 | 3.33782500 | 3.0600000 | |
4 | 1.01661584 | 4.0000000 | 4.35960800 | 4.0000000 | |
4.5 | 1.14369282 | 5.0600000 | 5.51762900 | 5.0600000 | |
5 | 1.2707698 | 6.2500000 | 6.81188800 | 6.2500000 |
0.5 | 4.36677680 | 3.5000000 | 1.64248450 | 3.5000000 | |
1 | 1.74671070 | 7.0000000 | 3.28496900 | 7.0000000 | |
1.5 | 3.93009910 | 1.0000000 | 4.92745400 | 1.0000000 | |
2 | 6.98684280 | 1.4000000 | 6.56993800 | 1.4000000 | |
2.5 | 1.09169419 | 1.8000000 | 8.21242200 | 1.8000000 | |
0.001 | 3 | 1.57203963 | 2.1000000 | 9.85490700 | 2.1000000 |
3.5 | 2.13972060 | 2.4000000 | 1.14973920 | 2.4000000 | |
4 | 2.79473710 | 2.8000000 | 1.31398760 | 2.8000000 | |
4.5 | 3.53708920 | 3.2000000 | 1.47823600 | 3.2000000 | |
5 | 4.36677680 | 3.5000000 | 1.64248450 | 3.5000000 | |
0.5 | 6.12090700 | 1.7000000 | 2.73690750 | 1.7000000 | |
1 | 2.44836280 | 3.4000000 | 5.47381500 | 3.4000000 | |
1.5 | 5.50881630 | 5.1000000 | 8.21072200 | 5.1000000 | |
2 | 9.79345120 | 6.8000000 | 1.09476300 | 6.8000000 | |
2.5 | 1.53022675 | 8.5000000 | 1.36845380 | 8.5000000 | |
0.002 | 3 | 2.20352652 | 1.0200000 | 1.64214450 | 1.0200000 |
3.5 | 2.99924450 | 1.1900000 | 1.91583520 | 1.1900000 | |
4 | 3.91738050 | 1.3600000 | 2.18952600 | 1.3600000 | |
4.5 | 4.95793470 | 1.5300000 | 2.46321680 | 1.5300000 | |
5 | 6.12090700 | 1.7000000 | 2.73690750 | 1.7000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mofarreh, F.; Khan, A.; Shah, R.; Abdeljabbar, A. A Comparative Analysis of Fractional-Order Fokker–Planck Equation. Symmetry 2023, 15, 430. https://doi.org/10.3390/sym15020430
Mofarreh F, Khan A, Shah R, Abdeljabbar A. A Comparative Analysis of Fractional-Order Fokker–Planck Equation. Symmetry. 2023; 15(2):430. https://doi.org/10.3390/sym15020430
Chicago/Turabian StyleMofarreh, Fatemah, Asfandyar Khan, Rasool Shah, and Alrazi Abdeljabbar. 2023. "A Comparative Analysis of Fractional-Order Fokker–Planck Equation" Symmetry 15, no. 2: 430. https://doi.org/10.3390/sym15020430
APA StyleMofarreh, F., Khan, A., Shah, R., & Abdeljabbar, A. (2023). A Comparative Analysis of Fractional-Order Fokker–Planck Equation. Symmetry, 15(2), 430. https://doi.org/10.3390/sym15020430