Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids
Abstract
:1. Introduction
2. Relativistic Ideal Hydrodynamics
3. Relativistic Dissipative Hydrodynamics
3.1. Matching Conditions
3.2. Decomposition in Different Dissipative Processes
3.3. Definition of Flow Velocity
3.4. Equations of Relativistic Dissipative Hydrodynamics
4. Relativistic Navier-Stokes (First-Order) Theory
5. Israel–Stewart (Second-Order) Theory
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Jaiswal, A.; Roy, V. Relativistic hydrodynamics in heavy-ion collisions: General aspects and recent developments. Adv. High Energy Phys. 2016, 2016, 9623034. [Google Scholar] [CrossRef]
- Florkowski, W.; Heller, M.P.; Spaliński, M. New theories of relativistic hydrodynamics in the LHC era. Rep. Prog. Phys. 2018, 81, 046001. [Google Scholar] [CrossRef] [PubMed]
- Denicol, G.S.; Rischke, D.H. Microscopic Foundations of Relativistic Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Elfner, H.; Müller, B. The exploration of hot and dense nuclear matter: Introduction to relativistic heavy-ion physics. arXiv 2022, arXiv:2210.12056. [Google Scholar]
- Font, J.A. Numerical hydrodynamics in general relativity. Living Rev. Rel. 2000, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Baiotti, L.; Rezzolla, L. Binary neutron star mergers: A review of Einstein’s richest laboratory. Rep. Prog. Phys. 2017, 80, 096901. [Google Scholar] [CrossRef]
- Busza, W.; Rajagopal, K.; van der Schee, W. Heavy Ion Collisions: The Big Picture and the Big Questions. Annu. Rev. Nucl. Part. Sci. 2018, 68, 339–376. [Google Scholar] [CrossRef]
- Jeon, S.; Heinz, U. Introduction to hydrodynamics. Int. J. Mod. Phys. 2015, 24, 1530010. [Google Scholar] [CrossRef]
- Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 2019, 109, 103714. [Google Scholar] [CrossRef]
- Haskell, B.; Sedrakian, A. Superfluidity and Superconductivity in Neutron Stars. Astrophys. Space Sci. Libr. 2018, 457, 401–454. [Google Scholar]
- Andersson, N.; Comer, G.L. Relativistic fluid dynamics: Physics for many different scales. Living Rev. Rel. 2021, 24, 3. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic theory of the simple fluid. Phys. Rev. 1940, 58, 919–924. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Fluid Mechanics. In Fluid Mechanics; Landau, L., Lifshitz, E., Eds.; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Hiscock, W.A.; Lindblom, L. Stability and causality in dissipative relativistic fluids. Ann. Phys. 1983, 151, 466–496. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725–733. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Linear plane waves in dissipative relativistic fluids. Phys. Rev. D 1987, 35, 3723. [Google Scholar] [CrossRef]
- Denicol, G.S.; Kodama, T.; Koide, T.; Mota, P. Stability and causality in relativistic dissipative hydrodynamics. J. Phys. G Nucl. Phys. 2008, 35, 115102. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Nonlinear Causality of General First-Order Relativistic Viscous Hydrodynamics. Phys. Rev. D 2019, 100, 104020, Erratum in Phys. Rev. D 2022, 105, 69902. [Google Scholar] [CrossRef]
- Kovtun, P. First-order relativistic hydrodynamics is stable. J. High Energy Phys. 2019, 10, 34. [Google Scholar] [CrossRef]
- Noronha, J.; Spaliński, M.; Speranza, E. Transient Relativistic Fluid Dynamics in a General Hydrodynamic Frame. Phys. Rev. Lett. 2022, 128, 252302. [Google Scholar] [CrossRef] [PubMed]
- Müller, I. Zum Paradoxon der Wärmeleitungstheorie. Z. Phys. 1967, 198, 329–344. [Google Scholar] [CrossRef]
- Israel, W. Nonstationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Pu, S.; Koide, T.; Rischke, D.H. Does stability of relativistic dissipative fluid dynamics imply causality? Phys. Rev. D 2010, 81, 114039. [Google Scholar] [CrossRef] [Green Version]
- Baier, R.; Romatschke, P.; Thanh Son, D.; Starinets, A.O.; Stephanov, M.A. Relativistic viscous hydrodynamics, conformal invariance, and holography. J. High Energy Phys. 2008, 4, 100. [Google Scholar] [CrossRef]
- Betz, B.; Henkel, D.; Rischke, D.H. Complete second-order dissipative fluid dynamics. J. Phys. G Nucl. Phys. 2009, 36, 064029. [Google Scholar] [CrossRef]
- Romatschke, P. Relativistic viscous fluid dynamics and non-equilibrium entropy. Class. Quantum Gravity 2010, 27, 025006. [Google Scholar] [CrossRef]
- Tsumura, K.; Kunihiro, T. Second-order relativistic hydrodynamic equations for viscous systems; How does the dissipation affect the internal energy? Phys. Lett. B 2010, 690, 255–260. [Google Scholar] [CrossRef]
- Betz, B.; Denicol, G.S.; Koide, T.; Molnár, E.; Niemi, H.; Rischke, D.H. Second order dissipative fluid dynamics from kinetic theory. In Proceedings of the European Physical Journal Web of Conferences, Budapest, Hungary, 15–20 August 2011; Volume 13, p. 07005. [Google Scholar]
- Moore, G.D.; Sohrabi, K.A. Kubo Formulas for Second-Order Hydrodynamic Coefficients. Phys. Rev. Lett. 2011, 106, 122302. [Google Scholar] [CrossRef]
- Moore, G.D.; Sohrabi, K.A. Thermodynamical second-order hydrodynamic coefficients. J. High Energy Phys. 2012, 11, 148. [Google Scholar] [CrossRef]
- Jaiswal, A.; Bhalerao, R.S.; Pal, S. Complete relativistic second-order dissipative hydrodynamics from the entropy principle. Phys. Rev. C 2013, 87, 021901. [Google Scholar] [CrossRef]
- Jaiswal, A.; Friman, B.; Redlich, K. Relativistic second-order dissipative hydrodynamics at finite chemical potential. Phys. Lett. B 2015, 751, 548–552. [Google Scholar] [CrossRef]
- Florkowski, W.; Jaiswal, A.; Maksymiuk, E.; Ryblewski, R.; Strickland, M. Relativistic quantum transport coefficients for second-order viscous hydrodynamics. Phys. Rev. C 2015, 91, 054907. [Google Scholar] [CrossRef]
- Finazzo, S.I.; Rougemont, R.; Marrochio, H.; Noronha, J. Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography. J. High Energy Phys. 2015, 2, 51. [Google Scholar] [CrossRef]
- Tinti, L.; Jaiswal, A.; Ryblewski, R. Quasiparticle second-order viscous hydrodynamics from kinetic theory. Phys. Rev. D 2017, 95, 054007. [Google Scholar] [CrossRef]
- Denicol, G.S.; Niemi, H.; Molnár, E.; Rischke, D.H. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 2012, 85, 114047. [Google Scholar] [CrossRef]
- Denicol, G.S.; Huang, X.G.; Koide, T.; Rischke, D.H. Consistency of field-theoretical and kinetic calculations of viscous transport coefficients for a relativistic fluid. Phys. Lett. B 2012, 708, 174–178. [Google Scholar] [CrossRef]
- Molnár, E.; Niemi, H.; Rischke, D.H. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation. Phys. Rev. D 2016, 93, 114025. [Google Scholar] [CrossRef]
- Harutyunyan, A.; Sedrakian, A.; Rischke, D.H. Relativistic Dissipative Fluid Dynamics from the Non-Equilibrium Statistical Operator. Particles 2018, 1, 155–165. [Google Scholar] [CrossRef]
- Becattini, F.; Buzzegoli, M.; Grossi, E. Reworking Zubarev’s Approach to Nonequilibrium Quantum Statistical Mechanics. Particles 2019, 2, 197–207. [Google Scholar] [CrossRef]
- Harutyunyan, A.; Sedrakian, A.; Rischke, D.H. Relativistic second-order dissipative hydrodynamics from Zubarev’s non-equilibrium statistical operator. Ann. Phys. 2022, 438, 168755. [Google Scholar] [CrossRef]
- Tokarchuk, M.; Hlushak, P. Unification of Thermo Field Kinetic and Hydrodynamics Approaches in the Theory of Dense Quantum–Field Systems. Particles 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Mirón Granese, N.; Kandus, A.; Calzetta, E. Field Theory Approaches to Relativistic Hydrodynamics. Entropy 2022, 24, 1790. [Google Scholar] [CrossRef] [PubMed]
- Buzzegoli, M.; Grossi, E.; Becattini, F. General equilibrium second-order hydrodynamic coefficients for free quantum fields. J. High Energy Phys. 2017, 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Becattini, F.; Buzzegoli, M.; Palermo, A. Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Scalar field. J. High Energy Phys. 2021, 2021, 101. [Google Scholar] [CrossRef]
- Cao, Z.; Hattori, K.; Hongo, M.; Huang, X.G.; Taya, H. Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity. Prog. Theor. Exp. Phys. 2022, 2022, 071D01. [Google Scholar] [CrossRef]
- Hongo, M.; Huang, X.G.; Kaminski, M.; Stephanov, M.; Yee, H.U. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation. J. High Energy Phys. 2021, 2021, 150. [Google Scholar] [CrossRef]
- Weickgenannt, N.; Wagner, D.; Speranza, E.; Rischke, D.H. Relativistic second-order dissipative spin hydrodynamics from the method of moments. Phys. Rev. D 2022, 106, 096014. [Google Scholar] [CrossRef]
- Gorbar, E.V.; Rybalka, D.O.; Shovkovy, I.A. Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity. Phys. Rev. D 2017, 95, 096010. [Google Scholar] [CrossRef]
- Hu, J.; Shi, S. Multicomponent second-order dissipative relativistic hydrodynamics with binary reactive collisions. Phys. Rev. D 2022, 106, 014007. [Google Scholar] [CrossRef]
- Almaalol, D.; Dore, T.; Noronha-Hostler, J. Stability of multi-component relativistic viscous hydrodynamics from Israel-Stewart and reproducing DNMR from maximizing the entropy. arXiv 2022, arXiv:2209.11210. [Google Scholar]
- Alalawi, H.; Alqahtani, M.; Strickland, M. Resummed Relativistic Dissipative Hydrodynamics. Symmetry 2022, 14, 329. [Google Scholar] [CrossRef]
- Buzzegoli, M.; Kharzeev, D.E.; Liu, Y.C.; Shi, S.; Voloshin, S.A.; Yee, H.U. Shear-induced anomalous transport and charge asymmetry of triangular flow in heavy-ion collisions. Phys. Rev. C 2022, 106, L051902. [Google Scholar] [CrossRef]
- Lahiri, S. Second order causal hydrodynamics in Eckart frame: Using gradient expansion scheme. Class. Quantum Gravity 2020, 37, 075010. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J.; Scherrer, R.J. Cosmological consequences of first-order general-relativistic viscous fluid dynamics. Phys. Rev. D 2023, 107, 023512. [Google Scholar] [CrossRef]
- Most, E.R.; Noronha, J. Dissipative magnetohydrodynamics for nonresistive relativistic plasmas: An implicit second-order flux-conservative formulation with stiff relaxation. Phys. Rev. D 2021, 104, 103028. [Google Scholar] [CrossRef]
- Landry, M.J.; Liu, H. A systematic formulation of chiral anomalous magnetohydrodynamics. arXiv 2022, arXiv:2212.09757. [Google Scholar]
- Dash, A.; Shokri, M.; Rezzolla, L.; Rischke, D.H. Charge diffusion in relativistic resistive second-order dissipative magnetohydrodynamics. arXiv 2022, arXiv:2211.09459. [Google Scholar]
- Harutyunyan, A.; Sedrakian, A. Electrical conductivity of a warm neutron star crust in magnetic fields. Phys. Rev. C 2016, 94, 025805. [Google Scholar] [CrossRef]
- Harutyunyan, A.; Sedrakian, A. Electrical conductivity tensor of dense plasma in magnetic fields. In Proceedings of the Modern Physics of Compact Stars 2015 (MPCS2015), Yerevan, Armenia, 30 September–3 October 2015; p. 11. [Google Scholar]
- Shternin, P.; Ofengeim, D. Transport coefficients of magnetized neutron star cores. Eur. Phys. J. A 2022, 58, 42. [Google Scholar] [CrossRef]
- Hattori, K.; Hongo, M.; Huang, X.G. New Developments in Relativistic Magnetohydrodynamics. Symmetry 2022, 14, 1851. [Google Scholar] [CrossRef]
- Monnai, A. Landau and Eckart frames for relativistic fluids in nuclear collisions. Phys. Rev. C 2019, 100, 01490. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. First-Order General-Relativistic Viscous Fluid Dynamics. Phys. Rev. X 2022, 12, 021044. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972; p. 688. [Google Scholar]
- Weinberg, S. Entropy Generation and the Survival of Protogalaxies in an Expanding Universe. ApJ 1971, 168, 175. [Google Scholar] [CrossRef]
- Danielewicz, P.; Gyulassy, M. Dissipative phenomena in quark-gluon plasmas. Phys. Rev. D 1985, 31, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Israel, W.; Stewart, J.M. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Betz, B.; Henkel, D.; Rischke, D.H. From kinetic theory to dissipative fluid dynamics. Prog. Part. Nucl. Phys. 2009, 62, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Denicol, G.S.; Molnár, E.; Niemi, H.; Rischke, D.H. Derivation of fluid dynamics from kinetic theory with the 14-moment approximation. Eur. Phys. J. A 2012, 48, 170. [Google Scholar] [CrossRef]
- Denicol, G.S. Kinetic foundations of relativistic dissipative fluid dynamics. J. Phys. G Nucl. Phys. 2014, 41, 124004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harutyunyan, A.; Sedrakian, A. Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids. Symmetry 2023, 15, 494. https://doi.org/10.3390/sym15020494
Harutyunyan A, Sedrakian A. Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids. Symmetry. 2023; 15(2):494. https://doi.org/10.3390/sym15020494
Chicago/Turabian StyleHarutyunyan, Arus, and Armen Sedrakian. 2023. "Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids" Symmetry 15, no. 2: 494. https://doi.org/10.3390/sym15020494
APA StyleHarutyunyan, A., & Sedrakian, A. (2023). Phenomenological Relativistic Second-Order Hydrodynamics for Multiflavor Fluids. Symmetry, 15(2), 494. https://doi.org/10.3390/sym15020494