Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory
Abstract
:1. Introduction
2. Relativistic Dissipative Hydrodynamics in a Nutshell
3. Outline of Carter’s Multifluid Theory
3.1. Multifluid Constitutive Relations
3.2. Multifluid Field Equations
4. Recovering the GENERIC Theory
4.1. Decomposition of Tensors
4.2. First Law of Thermodynamics
4.3. Recovering the GENERIC Field Equations
5. Infinite Heat Conduction Becomes Superfluidity
5.1. Rigorous Proof
5.2. Intuitive Explanation
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Brief Overview of the GENERIC Theory
Appendix B. Recovering the Relativistic Two-Fluid Model for Superfluidity
Appendix B.1. Decomposition of Tensors
Appendix B.2. Superfluid Gibbs–Duhem Equation
References
- Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Stability and causality in dissipative relativistic fluids. Ann. Phys. 1983, 151, 466–496. [Google Scholar] [CrossRef]
- Israel, W. Relativistic Thermodynamics. In E.C.G. Stueckelberg, an Unconventional Figure of Twentieth Century Physics: Selected Scientific Papers with Commentaries; Lacki, J., Ruegg, H., Wanders, G., Eds.; Birkhäuser Basel: Basel, Swizterland, 2009; pp. 101–113. [Google Scholar] [CrossRef]
- Salazar, J.F.; Zannias, T. On extended thermodynamics: From classical to the relativistic regime. Int. J. Mod. Phys. D 2020, 29, 2030010. [Google Scholar] [CrossRef]
- Baier, R.; Romatschke, P.; Thanh Son, D.; Starinets, A.O.; Stephanov, M.A. Relativistic viscous hydrodynamics, conformal invariance, and holography. J. High Energy Phys. 2008, 2008, 100. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. First-Order General-Relativistic Viscous Fluid Dynamics. Phys. Rev. X 2022, 12, 021044. [Google Scholar] [CrossRef]
- Denicol, G.S.; Niemi, H.; Molnár, E.; Rischke, D.H. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 2012, 85, 114047. [Google Scholar] [CrossRef]
- Tropea, C.; Yarin, A.; Foss, J. Springer Handbook of Experimental Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Steffe, J. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: Valleyford, WA, USA, 1996. [Google Scholar]
- Gavassino, L.; Disconzi, M.M.; Noronha, J. Universality Classes of Relativistic Fluid Dynamics I: Foundations. arXiv 2023, arXiv:2302.03478. [Google Scholar] [CrossRef]
- Strickland, M. Anisotropic Hydrodynamics: Three lectures. Acta Phys. Polon. B 2014, 45, 2355–2394. [Google Scholar] [CrossRef]
- Alqahtani, M.; Nopoush, M.; Strickland, M. Relativistic anisotropic hydrodynamics. Prog. Part. Nucl. Phys. 2018, 101, 204–248. [Google Scholar] [CrossRef]
- Stephanov, M.; Yin, Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D 2018, 98, 036006. [Google Scholar] [CrossRef]
- Gavassino, L.; Noronha, J. Relativistic bulk-viscous dynamics far from equilibrium. arXiv 2023, arXiv:2305.04119. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- van Kampen, N.G. Relativistic Thermodynamics of Moving Systems. Phys. Rev. 1968, 173, 295–301. [Google Scholar] [CrossRef]
- Gavassino, L. The zeroth law of thermodynamics in special relativity. Found. Phys. 2020, 50, 1554–1586. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. When the entropy has no maximum: A new perspective on the instability of the first-order theories of dissipation. Phys. Rev. D 2020, 102, 043018. [Google Scholar] [CrossRef]
- Carter, B. Covariant theory of conductivity in ideal fluid or solid media. In Relativistic Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 1385, p. 1. [Google Scholar] [CrossRef]
- Lopez-Monsalvo, C.S.; Andersson, N. Thermal dynamics in general relativity. Proc. R. Soc. Lond. Ser. A 2011, 467, 738–759. [Google Scholar] [CrossRef]
- Priou, D. Comparison between variational and traditional approaches to relativistic thermodynamics of dissipative fluids. Phys. Rev. D 1991, 43, 1223–1234. [Google Scholar] [CrossRef]
- Olson, T.S.; Hiscock, W.A. Stability, causality, and hyperbolicity in Carter’s “regular” theory of relativistic heat-conducting fluids. Phys. Rev. D 1990, 41, 3687–3695. [Google Scholar] [CrossRef]
- Gavassino, L. Stability and causality of Carter’s multifluid theory. Class. Quantum Gravity 2022, 39, 185008. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. Extending Israel and Stewart hydrodynamics to relativistic superfluids via Carter’s multifluid approach. Phys. Rev. D 2022, 105, 045011. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C. On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity. Phys. A Stat. Mech. Its Appl. 1998, 259, 24–42. [Google Scholar] [CrossRef]
- Öttinger, H.C. GENERIC: Review of successful applications and a challenge for the future. arXiv 2018, arXiv:1810.08470. [Google Scholar]
- Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A Math. Gen. 2012, 45, 473001. [Google Scholar] [CrossRef]
- Glorioso, P.; Liu, H. Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics. arXiv 2018, arXiv:1805.09331. [Google Scholar]
- Landau, L.; Lifshitz, E. Fluid Mechanics; Number v. 6; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Agrawal, A.; Kushwaha, H.M.; Jadhav, R.S. Burnett Equations: Derivation and Analysis. In Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics; Springer International Publishing: Cham, Switzerland, 2020; pp. 125–188. [Google Scholar] [CrossRef]
- Romatschke, P.; Romatschke, U. Relativistic Fluid Dynamics In and Out of Equilibrium—Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions. arXiv 2017, arXiv:1712.05815. [Google Scholar]
- Florkowski, W.; Heller, M.P.; Spaliński, M. New theories of relativistic hydrodynamics in the LHC era. Rep. Prog. Phys. 2018, 81, 046001. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended Irreversible Thermodynamics. Rep. Prog. Phys. 1999, 51, 1105. [Google Scholar] [CrossRef]
- Roylance, D. Engineering Viscoelasticity; MIT Lecture Notes; MIT: Cambridge, MA, USA, 2001. [Google Scholar]
- Cattaneo, C. Sur une Forme de L’équation de la Chaleur Éliminant le Paradoxe d’une Propagation Instantanée; Comptes Rendus Hebdomadaires des séances de L’Académie des Sciences; Gauthier-Villars: Paris, France, 1958. [Google Scholar]
- Muller, I.; Ruggeri, T. Rational Extended Thermodynamics, 2nd ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids, 2nd ed.; Dover Publications: New York, NY, USA, 1955. [Google Scholar]
- Landau, L.; Lifshitz, E. Theory of Elasticity; Number v. 7; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Findley, W.; Lai, J.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials; Dover Publications: Mineola, NY, USA, 1976. [Google Scholar]
- Baggioli, M.; Vasin, M.; Brazhkin, V.; Trachenko, K. Gapped momentum states. Phys. Rep. 2020, 865, 1–44. [Google Scholar] [CrossRef]
- Cercignani, C.; Kremer, G.M. The Relativistic Boltzmann Equation: Theory and Applications; Birkhäuser: Basel, Switzerland, 2002. [Google Scholar]
- Huang, K. Statistical Mechanics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Rauch, J. Partial Differential Equations; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919–924. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Nonlinear causality of general first-order relativistic viscous hydrodynamics. Phys. Rev. D 2019, 100, 104020. [Google Scholar] [CrossRef]
- Kovtun, P. First-order relativistic hydrodynamics is stable. J. High Energy Phys. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Wagner, D.; Palermo, A.; Ambruş, V.E. Inverse-Reynolds-dominance approach to transient fluid dynamics. Phys. Rev. D 2022, 106, 016013. [Google Scholar] [CrossRef]
- Heller, M.P.; Spalinski, M. Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation. Phys. Rev. Lett. 2015, 115, 072501. [Google Scholar] [CrossRef] [PubMed]
- Heller, M.P.; Kurkela, A.; Spaliński, M.; Svensson, V. Hydrodynamization in kinetic theory: Transient modes and the gradient expansion. Phys. Rev. D 2018, 97, 091503. [Google Scholar] [CrossRef]
- Romatschke, P. Relativistic Fluid Dynamics Far From Local Equilibrium. Phys. Rev. Lett. 2018, 120, 012301. [Google Scholar] [CrossRef]
- Spaliński, M. On the hydrodynamic attractor of Yang–Mills plasma. Phys. Lett. B 2018, 776, 468–472. [Google Scholar] [CrossRef]
- Denicol, G.S.; Noronha, J.; Niemi, H.; Rischke, D.H. Origin of the relaxation time in dissipative fluid dynamics. Phys. Rev. D 2011, 83, 074019. [Google Scholar] [CrossRef]
- Liu, I.S.; Müller, I.; Ruggeri, T. Relativistic thermodynamics of gases. Ann. Phys. 1986, 169, 191–219. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Heinz, U.; Schaefer, T. Fluid dynamics from the Boltzmann equation using a maximum entropy distribution. Phys. Rev. C 2023, 108, 034907. [Google Scholar] [CrossRef]
- Lindblom, L. The Relaxation Effect in Dissipative Relativistic Fluid Theories. Ann. Phys. 1996, 247, 1–18. [Google Scholar] [CrossRef]
- Geroch, R. Relativistic theories of dissipative fluids. J. Math. Phys. 1995, 36, 4226–4241. [Google Scholar] [CrossRef]
- Heller, M.P.; Serantes, A.; Spaliński, M.; Svensson, V.; Withers, B. Relativistic Hydrodynamics: A Singulant Perspective. Phys. Rev. X 2022, 12, 041010. [Google Scholar] [CrossRef]
- Wagner, D.; Gavassino, L. The regime of applicability of Israel-Stewart hydrodynamics. arXiv 2023, arXiv:2309.14828. [Google Scholar] [CrossRef]
- Carter, B. Convective variational approach to relativistic thermodynamics of dissipative fluids. Proc. R. Soc. Lond. Ser. A 1991, 433, 45–62. [Google Scholar] [CrossRef]
- Carter, B.; Khalatnikov, I. Momentum, vorticity, and helicity in covariant superfluid dynamics. Ann. Phys. 1992, 219, 243–265. [Google Scholar] [CrossRef]
- Carter, B.; Khalatnikov, I.M. Equivalence of convective and potential variational derivations of covariant superfluid dynamics. Phys. Rev. D 1992, 45, 4536–4544. [Google Scholar] [CrossRef] [PubMed]
- Andersson, N.; Comer, G.L. Relativistic Fluid Dynamics: Physics for Many Different Scales. Living Rev. Relativ. 2007, 10, 1. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M. Thermodynamics of uncharged relativistic multifluids. Class. Quantum Gravity 2020, 37, 025014. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. Multifluid Modelling of Relativistic Radiation Hydrodynamics. Symmetry 2020, 12, 1543. [Google Scholar] [CrossRef]
- Prix, R. Covariant vortex in superconducting-superfluid-normal fluid mixtures with a stiff equation of state. Phys. Rev. D 2000, 62, 103005. [Google Scholar] [CrossRef]
- Son, D.T. Hydrodynamics of Relativistic Systems with Broken Continuous Symmetries. Int. J. Mod. Phys. A 2001, 16, 1284–1286. [Google Scholar] [CrossRef]
- Gavassino, L.; Disconzi, M.M.; Noronha, J. Universality Classes of Relativistic Fluid Dynamics II: Applications. arXiv 2023, arXiv:2302.05332. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. Thermodynamic Stability Implies Causality. Phys. Rev. Lett. 2022, 128, 010606. [Google Scholar] [CrossRef] [PubMed]
- Gavassino, L. Can We Make Sense of Dissipation without Causality? Phys. Rev. X 2022, 12, 041001. [Google Scholar] [CrossRef]
- Gavassino, L. Bounds on transport from hydrodynamic stability. Phys. Lett. B 2023, 840, 137854. [Google Scholar] [CrossRef]
- Rocha, G.S.; de Brito, C.V.P.; Denicol, G.S. Hydrodynamic theories for a system of weakly self-interacting classical ultrarelativistic scalar particles: Microscopic derivations and attractors. Phys. Rev. D 2023, 108, 036017. [Google Scholar] [CrossRef]
- Pitaevskii, L.; Lifshitz, E. Physical Kinetics; Number v. 10; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Khalatnikov, I.M. An Introduction to the Theory of Superfluidity; Frontiers in Physics; Benjamin: New York, NY, USA, 1965; Trans from the Russian. [Google Scholar]
- Grozdanov, S.; Lucas, A.; Poovuttikul, N. Holography and hydrodynamics with weakly broken symmetries. Phys. Rev. D 2019, 99, 086012. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. Symmetric-hyperbolic quasihydrodynamics. Phys. Rev. D 2022, 106, 056010. [Google Scholar] [CrossRef]
- Chester, M. Second Sound in Solids. Phys. Rev. 1963, 131, 2013–2015. [Google Scholar] [CrossRef]
- Prohofsky, E.W.; Krumhansl, J.A. Second-Sound Propagation in Dielectric Solids. Phys. Rev. 1964, 133, A1403–A1410. [Google Scholar] [CrossRef]
- Enz, C.P. Two-fluid hydrodynamic description of ordered systems. Rev. Mod. Phys. 1974, 46, 705–753. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, K.; Song, B.; Shin, J.; Maznev, A.A.; Nelson, K.A.; Chen, G. Observation of second sound in graphite over 200 K. Nat. Commun. 2022, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Kume, E.; Zaccone, A.; Noirez, L. Unexpected thermo-elastic effects in liquid glycerol by mechanical deformation. Phys. Fluids 2021, 33, 072007. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, S.; Fan, X.; Sarter, M.; Yu, D.; Baggioli, M.; Hong, L. Unveiling the solid-like dynamics of liquids at low-frequency via nano-confinement. arXiv 2023, arXiv:2307.11429. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D.; Prix, R. Relativistic solution of Iordanskii problem in multi-constituent superfluid mechanics. arXiv 2001, arXiv:cond-mat/0101291. [Google Scholar] [CrossRef]
- Carter, B. Relativistic dynamics of vortex defects in superfluids. In Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions; NATO Advanced Science Institutes (ASI) Series C; Bunkov, Y.M., Godfrin, H., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 549, p. 267. [Google Scholar]
- Langlois, D.; Sedrakian, D.M.; Carter, B. Differential rotation of relativistic superfluid in neutron stars. Mon. Not. RAS 1998, 297, 1189–1201. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D. Equation of state for cool relativistic two-constituent superfluid dynamics. Phys. Rev. D 1995, 51, 5855–5864. [Google Scholar] [CrossRef]
- Sourie, A.; Chamel, N.; Novak, J.; Oertel, M. Global numerical simulations of the rise of vortex-mediated pulsar glitches in full general relativity. Mon. Not. RAS 2017, 464, 4641–4657. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Pizzochero, P.M.; Haskell, B. A universal formula for the relativistic correction to the mutual friction coupling time-scale in neutron stars. Mon. Not. RAS 2020, 494, 3562–3580. [Google Scholar] [CrossRef]
- Rau, P.B.; Wasserman, I. Relativistic finite temperature multifluid hydrodynamics in a neutron star from a variational principle. Phys. Rev. D 2020, 102, 063011. [Google Scholar] [CrossRef]
- Gavassino, L.; Antonelli, M.; Haskell, B. Superfluid Dynamics in Neutron Star Crusts: The Iordanskii Force and Chemical Gauge Covariance. Universe 2021, 7, 28. [Google Scholar] [CrossRef]
- Herzog, C.P.; Kovtun, P.K.; Son, D.T. Holographic model of superfluidity. Phys. Rev. D 2009, 79, 066002. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S. Dissipative superfluid dynamics from gravity. J. High Energy Phys. 2011, 2011, 125. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S.; Yarom, A. A theory of first order dissipative superfluid dynamics. J. High Energy Phys. 2014, 2014, 147. [Google Scholar] [CrossRef]
- Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A. Towards Hydrodynamics without an Entropy Current. Phys. Rev. Lett. 2012, 109, 101601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavassino, L. Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory. Symmetry 2024, 16, 78. https://doi.org/10.3390/sym16010078
Gavassino L. Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory. Symmetry. 2024; 16(1):78. https://doi.org/10.3390/sym16010078
Chicago/Turabian StyleGavassino, Lorenzo. 2024. "Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory" Symmetry 16, no. 1: 78. https://doi.org/10.3390/sym16010078
APA StyleGavassino, L. (2024). Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory. Symmetry, 16(1), 78. https://doi.org/10.3390/sym16010078