Stability Properties of Self-Similar Solutions in Symmetric Teleparallel f(Q)-Cosmology
Abstract
:1. Introduction
2. Basic Properties and Definitions for the Symmetric Teleparallel Theory
3. FLRW Cosmology
3.1. First Connection
3.2. Second Connection
Stability Properties
3.3. Third Connection
Stability Properties
3.4. Fourth Connection
Stability Properties
4. Existence of Self-Similar Solutions in an Anisotropic Bianchi I Cosmology in the Context of -Gravity
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perlmutter, S.; Alderin, G.; Goldhabe, G.; Kno, R.A.; Nugen, P.; Castr, P.G.; Deustu, S.; Fabbr, S.; Gooba, A.; Groo, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1998, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenk, A.V.; Challi, P.; Clocchiatt, A.; Dierck, A.; Garnavic, P.M.; Gillilan, R.L.; Hoga, C.J.; Jh, S.; Kirshne, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample. Astrophys. J. 2012, 746, 85. [Google Scholar] [CrossRef] [Green Version]
- Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Halpern, M.; Hill, R.S.; Hinshaw, G.; Kogut, A.; Komatsu, E.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2011, 192, 18. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.; Aghanim, N.; Alves, M.I.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; et al. Planck 2013 results. XVI. Cosmological Parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Tsujikawa, S. Modified gravity models of dark energy. Lect. Notes Phys. 2010, 800, 99. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rept. 2017, 692, 1. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S.D. Inflationary Cosmology in Modified Gravity Theories. Symmetry 2015, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Buchdahl, H.A. Non-Linear Lagrangians and Cosmological Theory. Mon. Not. Roy. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 1988, 214, 515. [Google Scholar] [CrossRef]
- Wang, D.; Mota, D. 4D Gauss-Bonnet gravity: Cosmological constraints, H0 tension and large scale structure. Phys. Dark Universe 2021, 32, 100813. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J.D.; Mota, D.F. Cosmology of modified Gauss-Bonnet gravity. Phys. Rev. D 2007, 76, 044027. [Google Scholar] [CrossRef] [Green Version]
- Bahamonte, S.; Bohmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Paliathanasis, A. Cosmological evolution and exact solutions in a fourth-order theory of gravity. Phys. Rev. D 2017, 95, 064062. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.C.; Bonilla, A.; Pan, S.; Saridakis, E.N. Observational constraints on f(T) gravity from varying fundamental constants. EPJC 2017, 77, 230. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bamba, K.; Bhatti, M.Z.; Farwa, U. Quasi static evolution of compact objects in modified gravity. Gen. Rel. Grav. 2022, 54, 7. [Google Scholar] [CrossRef]
- Farwa, U.; Yousaf, Z.; Bhatti, M.Z. A measure of complexity for axial self-gravitating static fluids. Phys. Scr. 2022, 97, 105307. [Google Scholar] [CrossRef]
- Shankaranarayanan, S.; Johnson, J.P. Modified theories of gravity: Why, how and what? Gen. Rel. Grav. 2022, 54, 44. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Weitzenböck, R. Invarianten Theorie; Nordhoff: Groningen, The Netherlands, 1923. [Google Scholar]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.-J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Barrow, J.D. The premature recollapse problem in closed inflationary universes. Nucl. Phys. B 1988, 296, 679. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.K.; Giannakoudi, I. A panorama of viable f(R) gravity dark energy models. IJMPD 2022, 31, 2250075. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2007, 77, 046009. [Google Scholar] [CrossRef] [Green Version]
- Bahamonte, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Gakis, V.; Hendry, M.; Said, J.L.; Mifsud, J.; Valentino, E.D. Teleparallel Gravity: From Theory to Cosmology, Report on Progress in Physics. arXiv 2022, arXiv:2106.13793. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D. 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Dent, J.B.; Dutta, S.; Saridakis, E.N. f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. JCAP 2011, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Krssak, M.; Hoogen, R.J.V.; Pereira, J.G.; Coley, C.G.B.A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quantum Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Born-Infeld gravity in Weitzenböck spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Matter Bounce Cosmology with the f(T) Gravity. Class. Quantum Grav. 2011, 28, 215011. [Google Scholar] [CrossRef] [Green Version]
- Atayde, L.; Frusciante, N. Can f(Q) gravity challenge ΛCDM? Phys. Rev. D 2021, 104, 064052. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. First evidence that non-metricity f(Q) gravity could challenge ΛCDM. Phys. Lett. B 2021, 822, 136634. [Google Scholar] [CrossRef]
- Solanki, R.; De, A.; Sahoo, P.K. Complete dark energy scenario in f(Q) gravity. Phys. Dark Universe 2022, 36, 100996. [Google Scholar] [CrossRef]
- Arora, S.; Sahoo, P.K. Crossing Phantom Divide in f(Q) gravity. Annalen. Phys. 2022, 534, 2200233. [Google Scholar] [CrossRef]
- De, A.; Mandal, S.; Beh, J.T.; Loo, T.-H.; Sahoo, P.K. Isotropization of locally rotationally symmetric Bianchi-I universe in f(Q)-gravity. EPJC 2022, 82, 72. [Google Scholar] [CrossRef]
- Lin, R.-H.; Zhai, X.-H. Spherically symmetric configuration in f(Q) gravity. Phys. Rev. D 2021, 103, 124001. [Google Scholar] [CrossRef]
- Ambrosio, F.D.; Fell, S.D.B.; Heisenberg, L.; Kuhn, S. Black holes in f(Q) gravity. Phys. Rev. D 2022, 105, 024042. [Google Scholar] [CrossRef]
- Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f(Q) gravity. Phys. Rev. D 2021, 103, 103521. [Google Scholar] [CrossRef]
- Lymperis, A. Late-time cosmology with phantom dark-energy in f(Q) gravity. JCAP 2022, 11, 18. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Mandal, S.; Sahoo, P.K. Parametrization of Deceleration Parameter in f(Q) Gravity. Physics 2022, 4, 1403. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Mandal, S.; Sahoo, P.K. Reconstruction of ΛCDM universe in f(Q) gravity. Phys. Lett. B 2022, 835, 137509. [Google Scholar] [CrossRef]
- Bajardi, F.; Vernieri, D.; Capozziello, S. Bouncing cosmology in f(Q) symmetric teleparallel gravity. Eur. Phys. J. Plus 2020, 135, 912. [Google Scholar] [CrossRef]
- Solanki, R.; Sahoo, P.K. Statefinder Analysis of Symmetric Teleparallel Cosmology. Annalen der Physik 2022, 534, 2200076. [Google Scholar] [CrossRef]
- Hu, K.; Katsuragawa, T.; Qiu, T. ADM formulation and Hamiltonian analysis of f(Q) gravity. Phys. Rev. D 2022, 106, 044025. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. Cosmology in f(Q) geometry. Phys. Rev. D 2020, 101, 103507. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Non-Riemannian Geometry; American Mathematical Society, Colloquium Publications: New York, NY, USA, 1927; Volume VIII. [Google Scholar]
- D’Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting cosmologies in teleparallelism. Class. Quantum Grav. 2022, 39, 025013. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Roumeliotis, M.; Christodoulakis, T. FLRW solutions in f(Q) theory: The effect of using different connections. Phys. Rev. D 2022, 106, 043509. [Google Scholar] [CrossRef]
- Dimakis, N.; Roumeliotis, M.; Paliathanasis, A.; Apostolopoulos, P.S.; Christodoulakis, T. Self-similar cosmological solutions in symmetric teleparallel theory: Friedmann-Lemaître-Robertson-Walker spacetimes. Phys. Rev. D 2022, 106, 123516. [Google Scholar] [CrossRef]
- Zhao, D. Covariant formulation of f(Q) theory. Eur. Phys. J. C 2022, 82, 303. [Google Scholar] [CrossRef]
- Clifton, T.; Barrow, J.D. The power of general relativity. Phys. Rev. D 2005, 72, 103005. [Google Scholar] [CrossRef] [Green Version]
- Esposito, F.; Carloni, S.; Vignolo, S. Bianchi type-I cosmological dynamics in f(Q) gravity. Class. Quantum Grav. 2022, 39, 235014. [Google Scholar] [CrossRef]
- McIntosh, C.B.G.; Steel, J.D. All vacuum Bianchi I metrics with a homothety. Class. Quantum Grav. 1991, 8, 1173. [Google Scholar] [CrossRef] [Green Version]
- Kasner, E. Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 1921, 43, 217. [Google Scholar] [CrossRef]
- Gasperini, M. The Kasner Solution. In Theory of Gravitational Interactions; Undergraduate Lecture Notes in Physics; Springer: Milano, Italy, 2013. [Google Scholar]
- Paliathanasis, A.; Said, J.L.; Barrow, J.D. Stability of the Kasner Universe in f(T) Gravity. Phys. Rev. D 2018, 97, 044008. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Stability Properties of Self-Similar Solutions in Symmetric Teleparallel f(Q)-Cosmology. Symmetry 2023, 15, 529. https://doi.org/10.3390/sym15020529
Paliathanasis A. Stability Properties of Self-Similar Solutions in Symmetric Teleparallel f(Q)-Cosmology. Symmetry. 2023; 15(2):529. https://doi.org/10.3390/sym15020529
Chicago/Turabian StylePaliathanasis, Andronikos. 2023. "Stability Properties of Self-Similar Solutions in Symmetric Teleparallel f(Q)-Cosmology" Symmetry 15, no. 2: 529. https://doi.org/10.3390/sym15020529
APA StylePaliathanasis, A. (2023). Stability Properties of Self-Similar Solutions in Symmetric Teleparallel f(Q)-Cosmology. Symmetry, 15(2), 529. https://doi.org/10.3390/sym15020529