Analysis of the Competition System Using Parameterized Fractional Differential Equations: Application to Real Data
Abstract
:1. Introduction
2. Basics of Fractional Operators
3. Mathematical Model
3.1. Fractional Order Model
3.2. Existence and Uniqueness
- for every , and satisfy , ,
- for every , and satisfy the Lipschitz condition , .
3.3. Equilibrium Points and Its Stability
4. Scheme with Parameterized Caputo Fractional Derivative
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Number L of 1998 Concerning Amendment to Law Number 7 of 1992 Concerning Banking. Supplement to the State Gazette of the Republic of Indonesia. Available online: https://www.global-regulation.com/translation/indonesia/7224941/act-no.-10-of-1998.html (accessed on 10 October 2022).
- Arbi, S. Lembaga: Perbankan, Keuangan dan Pembiayaan. Yogyakarta: BPFE. 2013. Available online: https://opac.uinkhas.ac.id/index.php?p=show_detail&id=16217 (accessed on 10 October 2022).
- Iskandar, S. Bank dan Lembaga Keuangan Lainnya. 2013. Available online: https://opac.perpusnas.go.id/DetailOpac.aspx?id=992962 (accessed on 10 October 2022).
- Perbankan, O.J. Statistik Perbankan Indonesia 2018. 2014. Available online: https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/statistik-perbankan-indonesia/default.aspx (accessed on 10 October 2022).
- Hastings, A. Population Biology: Concepts and Models; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kim, J.; Lee, D.J.; Ahn, J. A dynamic competition analysis on the Korean mobile phone market using competitive diffusion model. Comput. Ind. Eng. 2006, 51, 174–182. [Google Scholar] [CrossRef]
- Morris, S.A.; Pratt, D. Analysis of the Lotka–Volterra competition equations as a technological substitution model. Technol. Forecast. Soc. Chang. 2003, 70, 103–133. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, D.J.; Oh, H.S. Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka–Volterra model. Technol. Forecast. Soc. Chang. 2005, 72, 1044–1057. [Google Scholar] [CrossRef]
- Michalakelis, C.; Christodoulos, C.; Varoutas, D.; Sphicopoulos, T. Dynamic estimation of markets exhibiting a prey–predator behavior. Expert Syst. Appl. 2012, 39, 7690–7700. [Google Scholar] [CrossRef]
- Lakka, S.; Michalakelis, C.; Varoutas, D.; Martakos, D. Competitive dynamics in the operating systems market: Modeling and policy implications. Technol. Forecast. Soc. Chang. 2013, 80, 88–105. [Google Scholar] [CrossRef]
- Comes, C.A. Banking system: Three level Lotka-Volterra model. Procedia Econ. Financ. 2012, 3, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Fatmawati, M.A.; Azizah, M.; Ullah, S. A fractional model for the dynamics of competition between commercial and rural banks in Indonesia. Chaos Solitons Fractals 2019, 122, 32–46. [Google Scholar] [CrossRef]
- Wang, W.; Khan, M.A.; Kumam, P.; Thounthong, P. A comparison study of bank data in fractional calculus. Chaos Solitons Fractals 2019, 126, 369–384. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Khan, M.A. Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos Solitons Fractals 2020, 131, 109528. [Google Scholar] [CrossRef]
- Wang, W.; Khan, M.A. Analysis and numerical simulation of fractional model of bank data with fractal–fractional Atangana–Baleanu derivative. J. Comput. Appl. Math. 2020, 369, 112646. [Google Scholar] [CrossRef]
- Gavin, C.; Pokrovskii, A.; Prentice, M.; Sobolev, V. Dynamics of a Lotka-Volterra type model with applications to marine phage population dynamics. J. Phys. Conf. Ser. 2006, 55, 8. [Google Scholar] [CrossRef]
- Aboites, V.; Bravo-Avilés, J.F.; García-López, J.H.; Jaimes-Reategui, R.; Huerta-Cuellar, G. Interpretation and Dynamics of the Lotka–Volterra Model in the Description of a Three-Level Laser. Photonics 2021, 9, 16. [Google Scholar] [CrossRef]
- Hung, H.C.; Chiu, Y.C.; Huang, H.C.; Wu, M.C. An enhanced application of Lotka–Volterra model to forecast the sales of two competing retail formats. Comput. Ind. Eng. 2017, 109, 325–334. [Google Scholar] [CrossRef]
- Hsu, S.B.; Zhao, X.Q. A Lotka–Volterra competition model with seasonal succession. J. Math. Biol. 2012, 64, 109–130. [Google Scholar] [CrossRef]
- Dimas Martins, A.; Gjini, E. Modeling competitive mixtures with the Lotka-Volterra framework for more complex fitness assessment between strains. Front. Microbiol. 2020, 11, 572487. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, M.A.; Farooq, M. A fractional model for the dynamics of TB virus. Chaos Solitons Fractals 2018, 116, 63–71. [Google Scholar] [CrossRef]
- Podlubny, I. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng 1999, 198, 340. [Google Scholar]
- Das, S.; Gupta, P. A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 2011, 277, 1–6. [Google Scholar] [CrossRef]
- Khan, M.A.; Hammouch, Z.; Baleanu, D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model. Nat. Phenom. 2019, 14, 311. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, S.; Farooq, M. A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative. Chaos Solitons Fractals 2018, 116, 227–238. [Google Scholar] [CrossRef]
- Shaiful, E.M.; Utoyo, M.I. A fractional-order model for HIV dynamics in a two-sex population. Int. J. Math. Math. Sci. 2018, 2018, 6801475. [Google Scholar]
- Atangana, A.; Nieto, J.J. Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1687814015613758. [Google Scholar] [CrossRef]
- Abaid Ur Rehman, M.; Ahmad, J.; Hassan, A.; Awrejcewicz, J.; Pawlowski, W.; Karamti, H.; Alharbi, F.M. The Dynamics of a Fractional-Order Mathematical Model of Cancer Tumor Disease. Symmetry 2022, 14, 1694. [Google Scholar] [CrossRef]
- Lan, Y.; Shi, J.; Fang, H. Hopf Bifurcation and Control of a Fractional-Order Delay Stage Structure Prey-Predator Model with Two Fear Effects and Prey Refuge. Symmetry 2022, 14, 1408. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Li, H.; Zhuo, X. Optimal Control of a Cell-to-Cell Fractional-Order Model with Periodic Immune Response for HCV. Symmetry 2021, 13, 2121. [Google Scholar] [CrossRef]
- Askar, S.; Al-Khedhairi, A.; Elsonbaty, A.; Elsadany, A. Chaotic discrete fractional-order food chain model and hybrid image encryption scheme Application. Symmetry 2021, 13, 161. [Google Scholar] [CrossRef]
- Diouf, M.; Sene, N. Analysis of the financial chaotic model with the fractional derivative operator. Complexity 2020, 2020, 9845031. [Google Scholar] [CrossRef]
- Mahdy, A.M.; Amer, Y.A.E.; Mohamed, M.S.; Sobhy, E. General fractional financial models of awareness with Caputo–Fabrizio derivative. Adv. Mech. Eng. 2020, 12, 1687814020975525. [Google Scholar] [CrossRef]
- Xu, C.; Aouiti, C.; Liao, M.; Li, P.; Liu, Z. Chaos control strategy for a fractional-order financial model. Adv. Differ. Eq. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. A modified parametrized method for ordinary differential equations with nonlocal operators, hal-03840759, Hal Open science. 2022.
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Atangana, A.; Khan, M.A.; Fatmawati. Modeling and analysis of competition model of bank data with fractal-fractional Caputo-Fabrizio operator. Alex. Eng. J. 2020, 59, 1985–1998. [Google Scholar] [CrossRef]
- Diethelm, K.; Freed, A.D. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forsch. Wiss. Rechn. 1998, 1999, 57–71. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DarAssi, M.H.; Khan, M.A.; Fatmawati; Alqarni, M.S. Analysis of the Competition System Using Parameterized Fractional Differential Equations: Application to Real Data. Symmetry 2023, 15, 542. https://doi.org/10.3390/sym15020542
DarAssi MH, Khan MA, Fatmawati, Alqarni MS. Analysis of the Competition System Using Parameterized Fractional Differential Equations: Application to Real Data. Symmetry. 2023; 15(2):542. https://doi.org/10.3390/sym15020542
Chicago/Turabian StyleDarAssi, Mahmoud H., Muhammad Altaf Khan, Fatmawati, and Marei Saeed Alqarni. 2023. "Analysis of the Competition System Using Parameterized Fractional Differential Equations: Application to Real Data" Symmetry 15, no. 2: 542. https://doi.org/10.3390/sym15020542
APA StyleDarAssi, M. H., Khan, M. A., Fatmawati, & Alqarni, M. S. (2023). Analysis of the Competition System Using Parameterized Fractional Differential Equations: Application to Real Data. Symmetry, 15(2), 542. https://doi.org/10.3390/sym15020542