A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses
Abstract
:1. Introduction
2. Material and Methods
3. Result and Discussion
3.1. Gamma-ray Attenuation Properties
3.2. Elastic Moduli and Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodsky, A.; Kathren, R.L. Historical development of radiation safety practices in radiology. Radiographics 1989, 9, 1267–1275. [Google Scholar] [CrossRef]
- Edison, P.; Chang, P.S.; Toh, G.H.; Lee, L.N.; Sanamandra, S.K.; Shah, V.A. Reducing radiation hazard opportunities in neonatal unit: Quality improvement in radiation safety practices. BMJ Open Qual. 2017, 6, e000128. [Google Scholar] [CrossRef] [Green Version]
- Langie, S.A.; Koppen, G.; Desaulniers, D.; Al-Mulla, F.; Al-Temaimi, R.; Amedei, A.; Azqueta, A.; Bisson, W.H.; Brown, D.; Brunborg, G.; et al. Causes of genome instability: The effect of low dose chemical exposures in modern society. Carcinogenesis 2015, 36 (Suppl. 1), S61–S88. [Google Scholar] [CrossRef]
- Seymour, C.B.; Mothersill, C. Radiation-Induced Bystander Effects—Implications for Cancer. Nat. Rev. Cancer 2004, 4, 158–164. Available online: https://radiationeffects.org/wp-content/uploads/2015/08/Radiation-induced-bystander-effects.pdf (accessed on 12 January 2023.). [CrossRef]
- Mateuca, R.; Lombaert, N.; Aka, P.V.; Decordier, I.; Kirsch-Volders, M. Chromosomal changes: Induction, detection methods and applicability in human biomonitoring. Biochimie 2006, 88, 1515–1531. [Google Scholar] [CrossRef] [PubMed]
- Hickling, S.; Xiang, L.; Jones, K.C.; Parodi, K.; Assmann, W.; Avery, S.; Hobson, M.; El Naqa, I. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications. Med. Phys. 2018, 45, e707–e721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.C.; Traughber, M.; Muzic, R.F. The role of imaging in radiation therapy planning: Past, present, and future. BioMed Res. Inter. 2014, 2014, 231090. [Google Scholar] [CrossRef]
- Holmberg, O.; Malone, J.; Rehani, M.; McLean, D.; Czarwinski, R. Current issues and actions in radiation protection of patients. Eur. J. Radiol. 2010, 76, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, M.; Brennan, P.C. Protective aprons in imaging departments: Manufacturer stated lead equivalence values require validation. Eur. Radiol. 2005, 15, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Ngaile, J.E.; Uiso, C.B.S.; Msaki, P.; Kazema, R. Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations. Radiat. Prot. Dosim. 2008, 130, 490–498. [Google Scholar] [CrossRef] [Green Version]
- AbuAlRoos, N.J.; Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Kang, J.H.; Oh, S.H.; Oh, J.I.; Kim, S.H.; Choi, Y.S.; Hwang, E.H. Protection evaluation of non-lead radiation-shielding fabric: Preliminary exposure-dose study. Oral Radiol. 2019, 35, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Tishkevich, D.I.; Grabchikov, S.S.; Lastovskii, S.B.; Trukhanov, S.V.; Vasin, D.S.; Zubar, T.I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Sivakov, V.A.; Muradyan, T.R.; et al. Function composites materials for shielding applications: Correlation between phase separation and attenuation properties. J. Alloys Compd. 2019, 771, 238–245. [Google Scholar] [CrossRef]
- Kilic, G.; Ilik, E.; Issa, S.A.; ALMisned, G.; Tekin, H.O. Tailoring critical material properties of some ternary glasses through ZnO/CdO alteration: A focusing study on multiple behavioral changes. Appl. Phys. A 2022, 128, 890. [Google Scholar] [CrossRef]
- El-Mallawany, R.; Abdalla, M.D.; Ahmed, I.A. New tellurite glass: Optical properties. Mater. Chem. Phys. 2008, 109, 291–296. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zhou, C.; Sun, Y.; Li, P.; Qi, X. High refractive index of Eu3+ doped La2O3-TiO2-Nb2O5-WO3 oxide glasses with low wavelength dispersion. J. Non-Cryst. Solids 2022, 581, 121228. [Google Scholar] [CrossRef]
- Shoaib, M.; Rooh, G.; Chanthima, N.; Sareein, T.; Kim, H.J.; Kothan, S.; Kaewkhao, J. Luminescence behavior of Nd3+ ions doped ZnO-BaO-(Gd2O3/GdF3)-P2O5 glasses for laser material applications. J. Lumin. 2021, 236, 118139. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Onah, V.C.; Yang, W.; Leng, Z.; Han, K.; Zhang, F.; Zhang, Y.; Han, Y.; Li, Y.; et al. Physical and optical properties of TeO2-WO3-GdF3 tellurite glass system. Ceram. Int. 2022, 48, 12497–12505. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Sayyed, M.I.; Kothan, S.; Kim, H.J.; Kaewkhao, J. High density of tungsten gadolinium borate glasses for radiation shielding material: Effect of WO3 concentration. Radiat. Phys. Chem. 2022, 192, 109926. [Google Scholar] [CrossRef]
- Mann, K.S.; Mann, S.S. Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Ann. Nucl. Energy 2021, 150, 107845. [Google Scholar] [CrossRef]
- Celen, Y.Y.; Sarihan, M.; Almisned, G.; Tekin, H.O.; Ekmekçi, I. Calculation of gamma-ray buildup factors for some medical materials. Emerg. Mater. Res. 2022, 11, 388–398. [Google Scholar] [CrossRef]
- Tekin, H.O.; ALMisned, G.; Issa, S.A.; Zakaly, H.M. A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code. Nucl. Eng. Technol. 2022, 54, 3317–3323. [Google Scholar] [CrossRef]
- Ilik, E. Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses. Appl. Phys. A 2022, 128, 496. [Google Scholar] [CrossRef]
- Makishima, A.; Mackenzie, J.D. Direct Calculation of Young’s Modulus of Glass. J. Non-Cryst. Solids 1973, 12, 35–45. [Google Scholar] [CrossRef]
- Rouxel, T. Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 2007, 90, 3019–3039. [Google Scholar] [CrossRef]
- To, T.; Jensen, L.R.; Smedskjaer, M.M. On the relation between fracture toughness and crack resistance in oxide glasses. J. Non-Cryst. Solids 2020, 534, 119946. [Google Scholar] [CrossRef]
- Ghosh, S.; Sharma, A.D.; Mukhopadhyay, A.K.; Kundu, P.; Basu, R.N. Effect of BaO addition on magnesium lanthanum alumino borosilicate-based glass-ceramic sealant for anode-supported solid oxide fuel cell. Int. J. Hydrogen Energy 2010, 35, 272–283. [Google Scholar] [CrossRef]
- Lawrance, G.A. Introduction to Coordination Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
Sample | % mol Fraction | Density (g/cm3) | ||
---|---|---|---|---|
TeO2 | WO3 | GdF3 | ||
M1 | 60 | 40 | 0 | 5.6824 |
M2 | 60 | 30 | 10 | 5.6983 |
M3 | 60 | 20 | 20 | 5.7705 |
M4 | 60 | 10 | 30 | 5.8204 |
Sample Code | ΣVi (cm3/mol) | G (kJ/cm3) | Vt (cm3/mol) | E (GPa) | B (GPa) | S (GPa) | L (GPa) | σ | H (GPa) |
---|---|---|---|---|---|---|---|---|---|
M1 | 17.34 | 59.52 | 0.522732 | 62.226 | 39.033 | 25.207 | 57.938 | 0.42740 | 0.01695 |
M2 | 16.801 | 54.82 | 0.512684 | 56.211 | 34.582 | 22.867 | 51.732 | 0.42879 | 0.01661 |
M3 | 16.262 | 50.12 | 0.507303 | 50.852 | 30.957 | 20.735 | 46.508 | 0.42954 | 0.01643 |
M4 | 15.723 | 45.42 | 0.49948 | 45.373 | 27.195 | 18.566 | 41.120 | 0.43063 | 0.01616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALMisned, G.; Rabaa, E.; Rammah, Y.S.; Khattari, Z.Y.; Baykal, D.S.; Ilik, E.; Kilic, G.; Zakaly, H.M.H.; Ene, A.; Tekin, H.O. A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses. Symmetry 2023, 15, 602. https://doi.org/10.3390/sym15030602
ALMisned G, Rabaa E, Rammah YS, Khattari ZY, Baykal DS, Ilik E, Kilic G, Zakaly HMH, Ene A, Tekin HO. A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses. Symmetry. 2023; 15(3):602. https://doi.org/10.3390/sym15030602
Chicago/Turabian StyleALMisned, Ghada, Elaf Rabaa, Yasser S. Rammah, Ziad Y. Khattari, Duygu Sen Baykal, Erkan Ilik, Gokhan Kilic, Hesham M. H. Zakaly, Antoaneta Ene, and Huseyin Ozan Tekin. 2023. "A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses" Symmetry 15, no. 3: 602. https://doi.org/10.3390/sym15030602
APA StyleALMisned, G., Rabaa, E., Rammah, Y. S., Khattari, Z. Y., Baykal, D. S., Ilik, E., Kilic, G., Zakaly, H. M. H., Ene, A., & Tekin, H. O. (2023). A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses. Symmetry, 15(3), 602. https://doi.org/10.3390/sym15030602