Valency-Based Indices for Some Succinct Drugs by Using M-Polynomial
Abstract
:1. Introduction
1.1. Azacitidine Drug
1.2. Decitabine Drug
1.3. Guadecitabine Drug
2. Preliminaries
Formulation of Certain Coindices from -Polynomial
DBCI | Derivation from | |
---|---|---|
First Zagreb coindex | at | |
Second Zagreb coindex | at | |
F- coindex | at | |
Reformulated Zagreb coindex | at | |
Modified Zagreb coindex | at | |
Symmetric deg devision coindex | at | |
Inverse sum indeg coindex | at | |
Harmonic coindex | at | |
Augmented Zagreb coindex | at |
- (i)
- If then
- (ii)
- If then
3. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirmani, S.A.K.; Ali, P.; Azam, F. Topological indices and QSPR/QSAR analysis of some antiviral drugs being investigated for the treatment of COVID-19 patients. Int. J. Quantum Chem. 2021, 121, e26594. [Google Scholar] [CrossRef]
- Chaudhry, F.; Husin, M.N.; Afzal, F.; Afzal, D. M-polynomials and degree-based topological indices of tadpole graph. J. Discret. Math. Sci. Cryptogr. 2021, 24, 2059–2072. [Google Scholar] [CrossRef]
- Hameed, S.; Husin, M.N.; Afzal, F.; Hussain, H.; Afzal, D.; Farahani, M.R.; Cancan, M. On computation of newly defined degree-based topological invariants of Bismuth Tri-iodide via M-polynomial. J. Discret. Math. Sci. Cryptogr. 2021, 24, 2073–2091. [Google Scholar] [CrossRef]
- Kirmani, S.A.K.; Ali, P. CoM-polynomial and topological coindices of hyaluronic acid conjugates. Arab. J. Chem. 2022, 15, 103911. [Google Scholar] [CrossRef]
- Nagarajan, S.; Imran, M.; Kumar, P.M.; Pattabiraman, K.; Ghani, M.U. Degree-Based Entropy of Some Classes of Networks. Mathematics 2023, 11, 960. [Google Scholar] [CrossRef]
- Wang, Y.; Hafeez, S.; Akhter, S.; Iqbal, Z.; Aslam, A. The Generalized Inverse Sum Indeg Index of Some Graph Operations. Symmetry 2022, 14, 2349. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ghani, M.U.; Sultan, F.; Inc, M.; Cancan, M. Connecting SiO4 in Silicate and Silicate Chain Networks to Compute Kulli Temperature Indices. Molecules 2022, 27, 7533. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.U.; Sultan, F.; Tag El Din, E.S.M.; Khan, A.R.; Liu, J.B.; Cancan, M. A Paradigmatic Approach to Find the Valency-Based K-Banhatti and Redefined Zagreb Entropy for Niobium Oxide and a Metal–Organic Framework. Molecules 2022, 27, 6975. [Google Scholar] [CrossRef]
- Alaeiyan, M.; Bahrami, A.; Farahani, M.R. Cyclically domination polynomial of molecular graph of some nanotubes. Dig. J. Nanomater. Biostruct. 2011, 6, 143–147. [Google Scholar]
- Liu, Y.; Rezaei, M.; Farahani, M.R.; Husin, M.N.; Imran, M. The omega polynomial and the cluj-ilmenau index of an infinite class of the titania nanotubes TiO2(m,n). J. Comput. Theor. Nanosci. 2017, 14, 3429–3432. [Google Scholar] [CrossRef]
- Husin, M.N.; Zafar, S.; Gobithaasan, R.U. Investigation of atom-bond connectivity indices of line graphs using subdivision approach. Math. Probl. Eng. 2022, 6219155. [Google Scholar] [CrossRef]
- Modabish, A.; Husin, M.N.; Alameri, A.Q.; Ahmed, H.; Alaeiyan, M.; Farahani, M.R.; Cancan, M. Enumeration of spanning trees in a chain of diphenylene graphs. J. Discret. Math. Sci. Cryptogr. 2022, 25, 241–251. [Google Scholar] [CrossRef]
- Ali, F.; Rather, B.A.; Fatima, N.; Sarfraz, M.; Ullah, A.; Alharbi, K.A.M.; Dad, R. On the topological indices of commuting graphs for finite non-Abelian groups. Symmetry 2022, 14, 1266. [Google Scholar] [CrossRef]
- Husin, M.N.; Ariffin, A. On the edge version of topological indices for certain networks. Ital. J. Pure Appl. Math. 2022, 47, 550–564. [Google Scholar]
- Yu, Z.; Xu, L.; Yin, S.; Guo, L. Super Vertex (Edge)-Connectivity of Varietal Hypercube. Symmetry 2022, 14, 304. [Google Scholar] [CrossRef]
- Ali, S.; Ismail, R.; Campena, F.J.H.; Karamti, H.; Usman, M.G. On Rotationally Symmetrical Planar Networks and Their Local Fractional Metric Dimension. Symmetry 2023, 15, 530. [Google Scholar] [CrossRef]
- Eliasi, M.; Iranmanesh, A. Hosoya polynomial of hierarchical product of graphs. MATCH Commun. Math. Comput. Chem 2013, 69, 111–119. [Google Scholar]
- Hosoya, H. On some counting polynomials in chemistry. Discret. Appl. Math. 1988, 19, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Xu, S.J.; Yeh, Y.N. Hosoya polynomials of circumcoronene series. MATCH Commun. Math. Comput. Chem 2013, 69, 755–763. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Bartlett, A.C.; Hollot, C.V.; Lin, H. Root locations of an entire polytope of polynomials: It suffices to check the edges. Math. Control. Signals Syst. 1988, 1, 61–71. [Google Scholar] [CrossRef]
- Brown, J.; Dilcher, K.; Nowakowski, R. Roots of independence polynomials of well covered graphs. J. Algebr. Comb. 2000, 11, 197–210. [Google Scholar] [CrossRef]
- Brown, J.; Hickman, C.; Nowakowski, R. On the location of roots of independence polynomials. J. Algebr. Comb. 2004, 19, 273–282. [Google Scholar] [CrossRef]
- Brown, J.I.; Nowakowski, R.J. Average independence polynomials. J. Comb. Theory Ser. B 2005, 93, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.I.; Nowakowski, R.J. Bounding the roots of independence polynomials. Ars Comb. 2001, 58, 113–120. [Google Scholar]
- Deutsch, E.; Klavzar, S. Computing Hosoya polynomials of graphs from primary subgraphs. arXiv 2012, arXiv:1212.3179. [Google Scholar]
- Shanmukha, M.; Usha, A.; Shilpa, K.; Basavarajappa, N. M-polynomial and neighborhood M-polynomial methods for topological indices of porous graphene. Eur. Phys. J. Plus 2021, 136, 1–16. [Google Scholar] [CrossRef]
- Kirmani, S.A.K.; Ali, P.; Ahmad, J. Topological Coindices and Quantitative Structure-Property Analysis of Antiviral Drugs Investigated in the Treatment of COVID-19. J. Chem. 2022, 2022, 3036655. [Google Scholar] [CrossRef]
- Chu, Y.M.; Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Inc, M. Computation of zagreb polynomials and zagreb indices for benzenoid triangular & hourglass system. Polycycl. Aromat. Compd. 2022, 1–10. [Google Scholar] [CrossRef]
- Tag El Din, E.S.M.; Sultan, F.; Ghani, M.U.; Liu, J.B.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Alhushaybari, A. Some Novel Results Involving Prototypical Computation of Zagreb Polynomials and Indices for SiO4 Embedded in a Chain of Silicates. Molecules 2022, 28, 201. [Google Scholar] [CrossRef]
- Ghani, M.U.; Campena, F.J.H.; Ali, S.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Galal, A.M. Characterizations of Chemical Networks Entropies by K-Banhatii Topological Indices. Symmetry 2023, 15, 143. [Google Scholar] [CrossRef]
- Ghani, M.U.; Kashif Maqbool, M.; George, R.; Ofem, A.E.; Cancan, M. Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3. Mathematics 2022, 10, 4831. [Google Scholar] [CrossRef]
- Alam, A.; Ghani, M.U.; Kamran, M.; Shazib Hameed, M.; Hussain Khan, R.; Baig, A. Degree-Based Entropy for a Non-Kekulean Benzenoid Graph. J. Math. 2022, 2022, 2288207. [Google Scholar]
- Derissen, E.J.; Beijnen, J.H.; Schellens, J.H. Concise drug review: Azacitidine and decitabine. Oncologist 2013, 18, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Manero, G.; Roboz, G.; Walsh, K.; Kantarjian, H.; Ritchie, E.; Kropf, P.; O’Connell, C.; Tibes, R.; Lunin, S.; Rosenblat, T.; et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: Phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019, 6, e317–e327. [Google Scholar] [CrossRef]
- Berhe, M.; Wang, C. Computation of certain topological coindices of graphene sheet and C4C8(S) nanotubes and nanotorus. Appl. Math. Nonlinear Sci. 2019, 4, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.U.; Salman, M.; Khan, S.; Maden, A.D.; Ali, F. Mostar index of graphs associated to groups. Main Group Met. Chem. 2022, 45, 124–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, M.U.; Campena, F.J.H.; Pattabiraman, K.; Ismail, R.; Karamti, H.; Husin, M.N. Valency-Based Indices for Some Succinct Drugs by Using M-Polynomial. Symmetry 2023, 15, 603. https://doi.org/10.3390/sym15030603
Ghani MU, Campena FJH, Pattabiraman K, Ismail R, Karamti H, Husin MN. Valency-Based Indices for Some Succinct Drugs by Using M-Polynomial. Symmetry. 2023; 15(3):603. https://doi.org/10.3390/sym15030603
Chicago/Turabian StyleGhani, Muhammad Usman, Francis Joseph H. Campena, K. Pattabiraman, Rashad Ismail, Hanen Karamti, and Mohamad Nazri Husin. 2023. "Valency-Based Indices for Some Succinct Drugs by Using M-Polynomial" Symmetry 15, no. 3: 603. https://doi.org/10.3390/sym15030603
APA StyleGhani, M. U., Campena, F. J. H., Pattabiraman, K., Ismail, R., Karamti, H., & Husin, M. N. (2023). Valency-Based Indices for Some Succinct Drugs by Using M-Polynomial. Symmetry, 15(3), 603. https://doi.org/10.3390/sym15030603