Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results and Proofs
- 1.
- , we obtain
- 2.
- , we obtain
- 1.
- , we obtain
- 2.
- and , we obtain
- 1.
- , we obtain
- 2.
- , we obtain
- 3.
- and , we obtain
- 1.
- , we obtain
- 2.
- , we obtain
- 1.
- , we obtain
- 2.
- and , we obtain
- 1.
- If we use , we obtain
- 2.
- If we choose , we obtain
- 3.
- If we choose and , we obtain
- 1.
- If we use , we obtain
- 2.
- If we choose , we obtain
- 3.
- If we choose and , we obtain
- 1.
- , we get
- 2.
- If we use , we obtain
- 3.
- If we choose , we obtain
- 1.
- , we obtain
- 2.
- If we choose and , we obtain
- 1.
- , we obtain
- 2.
- , we obtain
- 3.
- If we choose and , we obtain
- (1)
- , we obtain
- 2.
- , we obtain
- 3.
- and , we obtain
4. Applications
4.1. Weighted Midpoint Quadrature
4.2. Application to Special Means
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Pećarixcx, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Kaijser, S.; Nikolova, L.; Persson, L.-E.; Wedestig, A. Hardy-type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Fract. Calc. Nonlinear Syst. 2020, 1, 75–94. [Google Scholar] [CrossRef]
- Saker, S.H.; Abdou, D.M.; Kubiaczyk, I. Opial and Pólya type inequalities via convexity. Fasc. Math. 2018, 60, 145–159. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Mitroi, F.-C.; Nikodem, K.; Wąsowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstratio Math. 2013, 46, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Pearce, C.E.M.; Pećarixcx, J. Inequalities for differentiable mappings with application to special means and quadrature formulæ. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- İşcan, İ.; Set, E.; Özdemir, M.E. Some new general integral inequalities for P-functions. Malaya J. Mat. 2014, 2, 510–516. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), 223–276, CISM Courses and Lect., 378; Springer: Vienna, Austria, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Eskandari, Z.; Avazzadeh, Z.; Ghaziani, R.K.; Li, B. Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method. Math. Meth. Appl. Sci. 2022. [CrossRef]
- Li, B.; Zhang, Y.; Li, X.; Eskandari, Z.; He, Q. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J. Comp. Appl. Math. 2023, 426, 115089. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; He, Q. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 2021, 146, 110856. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; Shi, L. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 2022, 156, 111860. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.; Baleanu, D. On fractional-order symmetric oscillator withoffset-boosting control. Nonlinear Anal. Model. Control. 2022, 27, 994–1008. [Google Scholar]
- Zhang, L.; Rahman, M.; Ahmad, S.; Riaz, M.B. Dynamics of fractional order delay model of coronavirus disease. AIMS Math. 2022, 7, 4211–4232. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M.; Latif, M.A.; Ahmad, H. Weighted midpoint Hermite-Hadamard-Fejér type inequalities in fractional calculus for harmonically convex functions. Fractal Fract. 2021, 5, 252. [Google Scholar]
- Kamouche, N.; Ghomrani, S.; Meftah, B. Fractional Simpson like type inequalities for differentiable s-convex functions. J. Appl. Math. Stat. Inform. 2022, 18, 73–91. [Google Scholar] [CrossRef]
- Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupa, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
- Khanna, N.; Zothansanga, A.; Kaushik, S.K.; Kumar, D. Some properties of fractional Boas transforms of wavelets. J. Math. 2021, 2021, 6689779. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Difference Equ. 2019, 2019, 454. [Google Scholar] [CrossRef]
- Set, E.; Gözpinar, A. A study on Hermite–Hadamard-type inequalities via new fractional conformable integrals. Asian-Eur. J. Math. 2021, 14, 2150016. [Google Scholar] [CrossRef]
- Liu, Z. On inequalities of Hermite-Hadamard type involving an s-convex function with applications. Issues Anal. 2016, 5, 3–20. [Google Scholar] [CrossRef]
- Azzouza, N.; Meftah, B. Some weighted integral inequalities for differentiable beta-convex functions. J. Interdiscip. Math. 2022, 25, 373–393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, N.; Aissaoui, F.; Bouhali, K.; Frioui, A.; Meftah, B.; Zennir, K.; Radwan, T. Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry 2023, 15, 612. https://doi.org/10.3390/sym15030612
Nasri N, Aissaoui F, Bouhali K, Frioui A, Meftah B, Zennir K, Radwan T. Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry. 2023; 15(3):612. https://doi.org/10.3390/sym15030612
Chicago/Turabian StyleNasri, Nassima, Fatima Aissaoui, Keltoum Bouhali, Assia Frioui, Badreddine Meftah, Khaled Zennir, and Taha Radwan. 2023. "Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions" Symmetry 15, no. 3: 612. https://doi.org/10.3390/sym15030612
APA StyleNasri, N., Aissaoui, F., Bouhali, K., Frioui, A., Meftah, B., Zennir, K., & Radwan, T. (2023). Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry, 15(3), 612. https://doi.org/10.3390/sym15030612