Next Article in Journal
PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction
Next Article in Special Issue
Numerical Method for Solving Fractional Order Optimal Control Problems with Free and Non-Free Terminal Time
Previous Article in Journal
A New Best Proximity Point Results in Partial Metric Spaces Endowed with a Graph
Previous Article in Special Issue
Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions

1
Departement de Mathématiques, Université 20 Août 1955, Skikda Bp 26 Route El-Hadaiek, Skikda 21000, Algeria
2
Département de Mathématiques, Faculté des Mathématiques, de l’informatique et des Sciences de la Matière, Université 8 Mai 1945 Guelma, Guelma 24000, Algeria
3
Department of Mathematics, College of Science and Arts, Qassim University, Ar-Rass 51452, Saudi Arabia
4
Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University, Port Said 42511, Egypt
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(3), 612; https://doi.org/10.3390/sym15030612
Submission received: 1 January 2023 / Revised: 7 February 2023 / Accepted: 23 February 2023 / Published: 28 February 2023
(This article belongs to the Special Issue Applied Mathematics and Fractional Calculus II)

Abstract

:
In the present paper, we first prove a new integral identity. Using that identity, we establish some fractional weighted midpoint-type inequalities for functions whose first derivatives are extended s-convex. Some special cases are discussed. Finally, to prove the effectiveness of our main results, we provide some applications to numerical integration as well as special means.

1. Introduction

It is well known that convexity is one of the most fundamental principles of analysis that is widely used in several fields of pure and applied sciences. Especially, in the classical theory of optimization where convexity causes it to be possible to obtain necessary and sufficient global optimality conditions; in consumer theory in economics, information theory as well as in the field of inequalities where the relationship is closely linked. For papers related to convexity and integral inequalities we refer readers to [1,2,3,4,5].
A real function defined on E is called convex; if for all x , z E and all a [ 0 , 1 ] , we have
g a x + 1 a z a g x + 1 a g ( z ) .
We note that all convex function on a finite interval, and [ ϱ , ϖ ] must satisfy the so called Hermite–Hadamard inequality (see [6]).
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x g ϱ + g ϖ 2 .
Inequality (1) can be seen as a second definition of convex functions equivalent to the first one for continuous function (see [7]); it is a character of which all convex functions must satisfy at least the left- or right-hand side.
Pearce and Pečarić [8] introduced the following inequality connected with (1)
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x ϖ ϱ 4 g ϱ q + g ϖ q 2 1 q ,
where q 1 .
Kirmaci [9] proved that, for all function f such that g or g q are convex, the following inequalities hold:
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x ϖ ϱ 8 g ϱ + g ϖ ,
where q 1 . Furthermore, they proved the following result
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x ϖ ϱ 16 4 p + 1 1 p 3 g ϱ q + g ϖ q 1 q + g ϱ q + 3 g ( ϖ ) q 1 q ,
where q , p > 1 with 1 p + 1 q = 1 .
İşcan et al. [10] showed the following midpoint inequalities for P-functions (see (3) below):
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x ϖ ϱ 4 g ϱ c + g ( ϖ ) c 1 c ,
where c 1 . Furthermore, they proved the following result:
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g x d x ϖ ϱ 4 1 b + 1 1 b g ϱ c + g ϱ + ϖ 2 c 1 c + g ϱ + ϖ 2 c + g ϖ c 1 c ϖ ϱ 4 1 b + 1 1 b 2 g ϱ c + g ϖ c 1 c + g ϱ c + 2 g ( ϖ ) c 1 c ,
where c , b > 1 with 1 c + 1 b = 1 .
Nowadays, fractional calculus has become a popular implement for scientists. It has been successfully used in various fields of science and engineering see [11,12,13,14,15,16,17,18]. Its main strength in the description of memory and genetic properties of different materials and processes has aroused great interest for researchers in different domains. This innovative idea of fractional calculus has attracted many researchers in recent years, several generalizations, extensions, refinements, and finding a counterpart have appeared (see [19,20,21,22,23,24,25,26]).
In [6], Sarikaya and Yildirim established the analogue fractional of inequality (1) as follows:
g ϱ + ϖ 2 2 α 1 Γ ( α + 1 ) ( ϖ ϱ ) α J ( ϱ + ϖ 2 ) + α g ( ϖ ) + J ( ϱ + ϖ 2 ) α g ( ϱ ) g ( ϱ ) + g ( ϖ ) 2 .
Furthermore, the authors investigate the following fractional midpoint inequalities for convex-first derivatives
2 α 1 Γ ( α + 1 ) ( ϖ ϱ ) α J ( ϱ + ϖ 2 ) + α g ( ϖ ) + J ( ϱ + ϖ 2 ) α g ( ϱ ) g ϱ + ϖ 2 ϖ ϱ 4 α + 1 ( α + 1 g ( ϱ ) q + α + 3 g ( ϖ ) q 2 α + 2 1 q + α + 3 g ( ϱ ) q + α + 1 g ( ϖ ) q 2 α + 2 1 q )
and
2 α 1 Γ ( α + 1 ) ( ϖ ϱ ) α J ( ϱ + ϖ 2 ) + α g ( ϖ ) + J ( ϱ + ϖ 2 ) α g ( ϱ ) g ϱ + ϖ 2 ϖ ϱ 4 1 α p + 1 1 p g ( ϱ ) q + 3 g ( ϖ ) q 4 1 q + 3 g ( ϱ ) q + g ( ϖ ) q 4 1 q ϖ ϱ 4 4 α p + 1 1 p g ( ϱ ) + g ( ϖ ) ,
where α > 0 , p , q > 1 with 1 p + 1 q = 1 , Γ is the gamma function and J ( ϱ + ϖ 2 ) + α and J ( ϱ + ϖ 2 ) α are the Riemann–Liouville integrals (see Definition 1 below).
Motivated by the above results, here, we first prove a new integral identity and, then, by using this identity, we establish some fractional weighted midpoint-type inequalities for functions that the first derivatives are extended s-convex functions. We also derive some known results and, state applications in numerical integration and in special means are presented to prove the effectiveness of our main results.
The paper is organized as follows. In the next section, we provide some auxiliary results as a preliminaries. In Section 3, we provide the main results and proofs. In Section 4, we will provide an applications of our analysis to illustrate our main results. In Section 5, we conclude our work.

2. Preliminaries

In this section, we recall certain notions concerning special functions, some classes of convex functions, and the Riemann–Liouville integral operator.
A non-negative function g : E 0 , R is said to be s-convex in the second sense for some fixed s 0 , 1 , if
g ( a x + ( 1 a ) z ) a s g ( x ) + ( 1 a ) s g ( z ) ,
holds for all x , z E and a [ 0 , 1 ] .
Whereas, a non-negative function g : E R is said to be P-convex; if for all x , z E and all a 0 , 1 , we have
g a x + 1 a z g x + g ( z ) .
A non-negative function g : E R is said to be s-Godunova–Levin function, where s 0 , 1 ; if for all x , z E , and all a 0 , 1 , we have
g a x + 1 a z g x a s + g ( z ) 1 a s .
A non-negative function g : E 0 , R is said to be an extended s-convex for some fixed s 1 , 1 ; if for all x , z E and all a 0 , 1 , we have
g ( a x + ( 1 a ) z ) a s g ( x ) + ( 1 a ) s g ( z ) .
Definition 1 
([12]). Let Ω L 1 [ ϱ , ϖ ] . The Riemann–Liouville integrals J ϱ + α Ω and J ϖ α Ω of order α > 0 with ϖ > ϱ 0 are defined by
J ϱ + α Ω ( d ) = 1 Γ α ϱ d d a α 1 Ω ( a ) d a , d > ϱ , J ϖ α Ω ( d ) = 1 Γ α d ϖ a d α 1 Ω ( a ) d a , ϖ > d ,
respectively, where
Γ ( α ) = 0 e a a α 1 d a ,
and J ϱ + 0 Ω ( d ) = J ϖ 0 Ω ( d ) = Ω ( d ) .
For any complex numbers k , l such that R e k > 0 and R e l > 0 . The beta function is provided by
B k , l = 0 1 a k 1 1 a l 1 d a = Γ ( k ) Γ ( l ) Γ ( k + l ) .

3. Main Results and Proofs

To prepare the proofs of our main results, we will need the following Lemma.
Lemma 1. 
Let g : E = [ ϱ , ϖ ] R be a differentiable map on I ( I is the interior of I), with ϱ < ϖ , and let w : [ ϱ , ϖ ] R be symmetric as regards ϱ + ϖ 2 . If g , w L [ ϱ , ϖ ] , then
L α w g ϱ + ϖ 2 L α w g = ϖ ϱ 2 4 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a 0 1 p 2 a g 1 a ϱ + ϖ 2 + a ϖ d a .
where
p 1 a = a 1 1 b α 1 w b ϱ + 1 b ϱ + ϖ 2 d b ,
p 2 a = a 1 1 b α 1 w b ϖ + 1 b ϱ + ϖ 2 d b ,
and
L α g = 2 ϖ ϱ α 1 Γ α J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) .
Proof. 
Let
I = I 1 I 2 ,
where
I 1 = 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a ,
and
I 2 = 0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 d a .
Integrating by parts I 1 , we obtain
0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a = 0 1 a 1 1 b α 1 w b ϱ + 1 b ϱ + ϖ 2 d b g a ϱ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ a 1 1 b α 1 w b ϱ + 1 b ϱ + ϖ 2 d b g a ϱ + 1 a ϱ + ϖ 2 a = 0 a = 1 2 ϖ ϱ 0 1 1 a α 1 w a ϱ + 1 a ϱ + ϖ 2 g a ϱ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ 0 1 1 b α 1 w b ϱ + 1 b ϱ + ϖ 2 d b g ϱ + ϖ 2 2 ϖ ϱ 0 1 1 a α 1 w a ϱ + 1 a ϱ + ϖ 2 g a ϱ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ α + 1 ϱ ϱ + ϖ 2 u ϱ α 1 w u d u g ϱ + ϖ 2 2 ϖ ϱ α + 1 ϱ ϱ + ϖ 2 u ϱ α 1 w u g u d u = 2 ϖ ϱ α + 1 Γ α J ϱ + ϖ 2 α w ( ϱ ) g ϱ + ϖ 2 2 ϖ ϱ α + 1 Γ α J ϱ + ϖ 2 α w g ( ϱ ) .
Similarly, we have
0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 d a = 0 1 a 1 1 b α 1 w b ϖ + 1 b ϱ + ϖ 2 d b g a ϖ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ a 1 1 b α 1 w b ϖ + 1 b ϱ + ϖ 2 d b g a ϖ + 1 a ϱ + ϖ 2 a = 0 a = 1 + 2 ϖ ϱ 0 1 1 a α 1 w a ϖ + 1 a ϱ + ϖ 2 g a ϖ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ 0 1 1 b α 1 w b ϖ + 1 b ϱ + ϖ 2 d b g ϱ + ϖ 2 + 2 ϖ ϱ 0 1 1 a α 1 w a ϖ + 1 a ϱ + ϖ 2 g a ϖ + 1 a ϱ + ϖ 2 d a = 2 ϖ ϱ α + 1 ϱ + ϖ 2 ϖ ϖ u α 1 w u d u g ϱ + ϖ 2 + 2 ϖ ϱ α + 1 ϱ + ϖ 2 ϖ ϖ u α 1 w u g u d u = 2 ϖ ϱ α + 1 Γ α J ϱ + ϖ 2 + α w ( ϖ ) g ϱ + ϖ 2 + 2 ϖ ϱ α + 1 Γ α J ϱ + ϖ 2 + α w g ( ϖ ) .
Substituting (10) and (11) into (9), then multiplying the resulting equality by ϖ ϱ 2 4 and using (8), we obtain the desired result. □
Theorem 1. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ such that g L [ ϱ , ϖ ] with 0 ϱ < ϖ , and let w : ϱ , ϖ R be a continuous and symmetric function as regards ϱ + ϖ 2 . If g is an extended s-convex for some fixed s 1 , 1 , then we have
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α w [ ϱ , ϖ ] , × Γ s + 1 Γ α + 1 g ϱ + 2 Γ s + α + 1 g ϱ + ϖ 2 + Γ s + 1 Γ α + 1 g ϖ Γ s + α + 2 ,
where Γ is the gamma function.
Proof. 
Using Lemma 1, the absolute value and s-convexity of g provide
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a + 0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 d a ϖ ϱ 2 4 w ϱ , ϖ , 0 1 a 1 1 b α 1 d b g a ϱ + 1 a ϱ + ϖ 2 d a + 0 1 a 1 1 b α 1 d b g a ϖ + 1 a ϱ + ϖ 2 d a ϖ ϱ 2 4 α w [ ϱ , ϖ ] , 0 1 1 a α a s g ϱ + 1 a s g ϱ + ϖ 2 d a + 0 1 1 a α a s g ϖ + 1 a s g ϱ + ϖ 2 d a = ϖ ϱ 2 4 α w ϱ , ϖ , × Γ s + 1 Γ α + 1 g ϱ + 2 Γ s + α + 1 g ϱ + ϖ 2 + Γ s + 1 Γ α + 1 g ϖ Γ s + α + 2 .
Then, the proof is now completed. □
Corollary 1. 
In Theorem 1, if we use:
1. 
s = 0 , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α α + 1 w [ ϱ , ϖ ] , g ϱ + 2 g ϱ + ϖ 2 + g ϖ .
2. 
s = 1 , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 2 α α + 1 w [ ϱ , ϖ ] , g ϱ + 2 α + 1 g ϱ + ϖ 2 + g ϖ 2 α + 2 .
Corollary 2. 
In Theorem 1, if we use α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 4 s + 1 s + 2 w [ ϱ , ϖ ] , g ϱ + 2 s + 1 g ϱ + ϖ 2 + g ( ϖ ) .
Remark 1. 
In Corollary 2, if we use s 0 , 1 , we obtain the first inequality of Corollary 2.2.1 in [27]. Moreover, if we use s = 0 and s = 1 , we obtain Corollary 2 and Corollary 3 in [28] respectively.
Corollary 3. 
In Theorem 1, if we choose:
1. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 Γ s + α + 2 Γ s + 1 Γ α + 1 g ϱ + 2 Γ s + α + 1 g ϱ + ϖ 2 + Γ s + 1 Γ α + 1 g ϖ .
2. 
w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 4 s + 2 s + 1 g ϱ + 2 s + 1 g ϱ + ϖ 2 + g ( ϖ ) .
Corollary 4. 
In Theorem 1, using the s-convexity of g , i.e.,
g ϱ + ϖ 2 g ϱ + g ϖ 2 s 1 1 + s ,
we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α 1 + s w [ ϱ , ϖ ] , 2 2 s Γ s + α + 1 + Γ s + 2 Γ α + 1 Γ s + α + 2 g ( ϱ ) + g ϖ .
Corollary 5. 
In Corollary 4, if we use:
1. 
α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N 2 2 s + 1 ϖ ϱ 2 4 1 + s s + 2 w [ ϱ , ϖ ] , g ϱ + g ϖ .
2. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 1 + s 2 2 s Γ s + α + 1 + Γ s + 2 Γ α + 1 Γ s + α + 2 g ( ϱ ) + g ϖ .
3. 
w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u 2 2 s + 1 ϖ ϱ 4 1 + s s + 2 g ϱ + g ϖ .
Remark 2. 
Corollary 5, the third point will be reduced to Theorem 2.2 in [9] when s = 1 .
Theorem 2. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ such that g L [ ϱ , ϖ ] with 0 ϱ < ϖ , and let w : ϱ , ϖ R be a continuous and symmetric function with respect to ϱ + ϖ 2 . If g q is an extended s-convex for some fixed s 1 , 1 and q > 1 with 1 p + 1 q = 1 , then we have
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α p α + 1 1 p w [ ϱ , ϖ ] , g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q ,
where B . , . is the beta function.
Proof. 
Using Lemma 1, the absolute value, Hölder’s inequality, and s-convexity of g , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a + 0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 d a ϖ ϱ 2 4 0 1 p 1 a p d a 1 p 0 1 g a ϱ + 1 a ϱ + ϖ 2 q d a 1 q + 0 1 p 2 a p d a 1 p 0 1 g a ϖ + 1 a ϱ + ϖ 2 q d a 1 q ϖ ϱ 2 4 w ϱ , ϖ , 0 1 a 1 1 b α 1 d b p d a 1 p × 0 1 a s g ϱ q + 1 a s g ϱ + ϖ 2 q d a 1 q + 0 1 a s g ϖ q + 1 a s g ϱ + ϖ 2 q d a 1 q ϖ ϱ 2 4 α w [ ϱ , ϖ ] , 0 1 1 a p α d a 1 p × g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q = ϖ ϱ 2 4 α p α + 1 1 p w [ ϱ , ϖ ] , g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q .
The proof is now finished. □
Corollary 6. 
In Theorem 2, if we use:
1. 
s = 0 , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α p α + 1 1 p w [ ϱ , ϖ ] , × g ϱ q + g ϱ + ϖ 2 q 1 q + g ϖ q + g ϱ + ϖ 2 q 1 q .
2. 
s = 1 , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α p α + 1 1 p w [ ϱ , ϖ ] , × g ϱ q + g ϱ + ϖ 2 q 2 1 q + g ϖ q + g ϱ + ϖ 2 q 2 1 q .
Corollary 7. 
In Theorem 2, if we use α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 4 p + 1 1 p w [ ϱ , ϖ ] , g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q .
Remark 3. 
In Corollary 7, if we assume that s 0 , 1 , we obtain Theorem 2.4 in [27]. Moreover, if we use s = 1 , we obtain Corollary 7 in [28], respectively.
Corollary 8. 
In Theorem 2, if we choose
1. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 p α + 1 1 p g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q .
2. 
w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 4 p + 1 1 p g ϱ q + g ϱ + ϖ 2 q s + 1 1 q + g ϖ q + g ϱ + ϖ 2 q s + 1 1 q .
Remark 4. 
Corollary 8, the second point will be reduced to Corollary 6 in [10] when s = 0 .
Corollary 9. 
In Theorem 2, using the s-convexity of g q , i.e.,
g ϱ + ϖ 2 q g ϱ q + g ϖ q 2 s 1 1 + s ,
we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α p α + 1 1 p w [ ϱ , ϖ ] , 1 + s + 2 1 s g ( ϱ ) q + 2 1 s g ϖ q 1 + s 2 1 q + 2 1 s g ϱ q + 1 + s + 2 1 s g ϖ q 1 + s 2 1 q .
Corollary 10. 
In Corollary 9:
1. 
If we use α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 4 p + 1 1 p w [ ϱ , ϖ ] , 1 + s + 2 1 s g ( ϱ ) q + 2 1 s g ϖ q 1 + s 2 1 q + 2 1 s g ϱ q + 1 + s + 2 1 s g ϖ q 1 + s 2 1 q .
2. 
If we choose w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 p α + 1 1 p 1 + s + 2 1 s g ( ϱ ) q + 2 1 s g ϖ q 1 + s 2 1 q + 2 1 s g ϱ q + 1 + s + 2 1 s g ϖ q 1 + s 2 1 q .
3. 
If we choose w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 4 p + 1 1 p 1 + s + 2 1 s g ( ϱ ) q + 2 1 s g ϖ q 1 + s 2 1 q + 2 1 s g ϱ q + 1 + s + 2 1 s g ϖ q 1 + s 2 1 q .
Remark 5. 
1. 
Corollary 10, the first point will be reduced to Corollary 2.3 in [9] when s = 1 .
2. 
The second point of Corollary 10 will be reduced to Theorem 6 in [6] when s = 1 .
3. 
Corollary 10, the third point will be reduced to Theorem 2.3 in [9] when s = 1 .
Corollary 11. 
In Corollary 9, if we use the discrete power mean inequality, we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 2 α p α + 1 1 p w [ ϱ , ϖ ] , 1 + s + 2 2 s 1 + s 2 1 q g ϱ q + g ϖ q 2 1 q .
Corollary 12. 
In Corollary 11:
1. 
If we use α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 2 p + 1 1 p w [ ϱ , ϖ ] , 1 + s + 2 2 s 1 + s 2 1 q g ϱ q + g ( ϖ ) q 2 1 q .
2. 
If we choose w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 2 p α + 1 1 p 1 + s + 2 2 s 1 + s 2 1 q g ϱ q + g ( ϖ ) q 2 1 q .
3. 
If we choose w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 2 p + 1 1 p 1 + s + 2 2 s 1 + s 2 1 q g ϱ q + g ϖ q 2 1 q .
Theorem 3. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ such that g L [ ϱ , ϖ ] with 0 ϱ < ϖ , and let w : ϱ , ϖ R be a continuous and symmetric function with respect to ϱ + ϖ 2 . If g q is an extended s-convex for some fixed s 1 , 1 and q 1 , then we have
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α α + 1 1 1 q w [ ϱ , ϖ ] , B s + 1 , α + 1 g ϱ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q + B s + 1 , α + 1 g ϖ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q ,
where B . , . is the beta function.
Proof. 
Using Lemma 1, the absolute value, power mean inequality, and s-convexity of g , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 d a + 0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 d a ϖ ϱ 2 4 0 1 p 1 a d t 1 1 q 0 1 p 1 a g a ϱ + 1 a ϱ + ϖ 2 q d a 1 q + 0 1 p 2 a d a 1 1 q 0 1 p 2 a g a ϖ + 1 a ϱ + ϖ 2 q d a 1 q ϖ ϱ 2 4 w ϱ , ϖ , 0 1 a 1 1 b α 1 d b d a 1 1 q × 0 1 a 1 1 b α 1 d b a s g ϱ q + 1 a s g ϱ + ϖ 2 q d a 1 q + 0 1 a 1 1 b α 1 d b a s g ϖ q + 1 a s g ϱ + ϖ 2 q d a 1 q = ϖ ϱ 2 4 α w ϱ , ϖ , 0 1 1 a α d a 1 1 q × 0 1 1 a α a s g ϱ q + 1 a s g ϱ + ϖ 2 q d a 1 q + 0 1 1 a α a s g ϖ q + 1 a s g ϱ + ϖ 2 q d a 1 q = ϖ ϱ 2 4 α α + 1 1 1 q w [ ϱ , ϖ ] , × g ϱ q 0 1 1 a α a s d a + g ϱ + ϖ 2 q 0 1 1 a α + s d a 1 q + g ϖ q 0 1 1 a α a s d a + g ϱ + ϖ 2 q 0 1 1 a α + s d a 1 q = ϖ ϱ 2 4 α α + 1 1 1 q w [ ϱ , ϖ ] , B s + 1 , α + 1 g ϱ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q + B s + 1 , α + 1 g ϖ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q .
The proof is now completed. □
Corollary 13. 
In Theorem 3, if we use:
1. 
s = 0 , we get
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α α + 1 w [ ϱ , ϖ ] , g ϱ q + g ϱ + ϖ 2 q 1 q + g ϖ q + g ϱ + ϖ 2 q 1 q .
2. 
If we use s = 1 , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α α + 1 w [ ϱ , ϖ ] , 1 α + 2 g ϱ q + α + 1 α + 2 g ϱ + ϖ 2 q 1 q + 1 α + 2 g ϖ q + α + 1 α + 2 g ϱ + ϖ 2 q 1 q .
3. 
If we choose α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 8 w ϱ , ϖ , 2 s + 1 s + 2 1 q g ϱ q + s + 1 g ϱ + ϖ 2 q 1 q + g ϖ q + s + 1 g ϱ + ϖ 2 q 1 q .
Remark 6. 
In the third point of Corollary 13, if we assume that s 0 , 1 , we obtain Theorem 2.2 in [27]. Moreover, if we use s = 1 , we obtain Corollary 12 in [28].
Corollary 14. 
In Theorem 3, if we choose:
1. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 α + 1 1 1 q B s + 1 , α + 1 g ϱ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q + B s + 1 , α + 1 g ϖ q + 1 α + s + 1 g ϱ + ϖ 2 q 1 q .
2. 
If we choose w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 8 2 s + 1 s + 2 1 q g ϱ q + s + 1 g ϱ + ϖ 2 q 1 q + g ϖ q + s + 1 g ϱ + ϖ 2 q 1 q .
Corollary 15. 
In Theorem 3, using the s-convexity of g , we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 4 α α + 1 1 1 q w [ ϱ , ϖ ] , × 1 + s α + s + 1 B s + 1 , α + 1 + 2 1 s 1 + s α + s + 1 g ϱ q + 2 1 s 1 + s α + s + 1 g ( ϖ ) q 1 q + 2 1 s 1 + s α + s + 1 g ϱ q + 1 + s α + s + 1 B s + 1 , α + 1 + 2 1 s 1 + s α + s + 1 g ϖ q 1 q .
Corollary 16. 
In Corollary 9, if we use:
1. 
α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 8 w ϱ , ϖ , 2 1 + s s + 2 1 q 1 + 2 1 s g ϱ q + 2 1 s g ( ϖ ) q 1 q + 2 1 s g ϱ q + 1 + 2 1 s g ϖ q 1 q .
2. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 4 α + 1 1 1 q 1 + s α + s + 1 B s + 1 , α + 1 + 2 1 s 1 + s α + s + 1 g ϱ q + 2 1 s 1 + s α + s + 1 g ϖ q 1 q + 2 1 s 1 + s α + s + 1 g ϱ q + 1 + s α + s + 1 B s + 1 , α + 1 + 2 1 s 1 + s α + s + 1 g ϖ q 1 q .
3. 
If we choose w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 8 2 1 + s s + 2 1 q 1 + 2 1 s g ϱ q + 2 1 s g ( ϖ ) q 1 q + 2 1 s g ϱ q + 1 + 2 1 s g ϖ q 1 q .
Remark 7. 
Corollary 16, the second point will be reduced to Theorem 5 in [6] when s = 1 .
Corollary 17. 
In Corollary 15, if we use the discrete power mean inequality, we obtain
L α w g ϱ + ϖ 2 L α w g ϖ ϱ 2 2 α α + 1 1 1 q w [ ϱ , ϖ ] , 1 + s α + s + 1 B s + 1 , α + 1 + 2 2 s 1 + s α + s + 1 1 q g ϱ q + g ϖ q 2 1 q .
Corollary 18. 
In Corollary 17, if we use:
(1)
α = 1 , we obtain
g ϱ + ϖ 2 ϱ ϖ w ( N ) d N ϱ ϖ w ( N ) g N d N ϖ ϱ 2 4 w ϱ , ϖ , 1 + 2 2 s 1 + s s + 2 1 q g a q + g ϖ q 1 q .
2. 
w ( u ) = 1 ϖ ϱ , we obtain
g ϱ + ϖ 2 2 α 1 ϖ ϱ α Γ α + 1 J ϱ + ϖ 2 α g ( ϱ ) + J ϱ + ϖ 2 + α g ( ϖ ) ϖ ϱ 2 α + 1 1 1 q 1 + s α + s + 1 B s + 1 , α + 1 + 2 2 s 1 + s α + s + 1 1 q g ϱ q + g ϖ q 2 1 q .
3. 
w ( u ) = 1 ϖ ϱ and α = 1 , we obtain
g ϱ + ϖ 2 1 ϖ ϱ ϱ ϖ g u d u ϖ ϱ 4 1 + 2 2 s 1 + s s + 2 1 q g ϱ q + g ( ϖ ) q 1 q .
Remark 8. 
Corollary 18, the first point will be reduced to Theorem 2 in [8] when s = 1 .

4. Applications

4.1. Weighted Midpoint Quadrature

Let Υ be the partition of the points ϱ = 0 < 1 < . . . < n = ϖ of the interval ϱ , ϖ , and consider the quadrature formula
ϖ ϱ w u g u d u = λ w g , Υ + R w g , Υ ,
where
λ w g , Υ = n 1 i = 0 g i + i + 1 2 i i + 1 w ( u ) d u
and R w g , Υ is the associated approximation error.
Proposition 1. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ with 0 ϱ < ϖ and g L 1 [ ϱ , ϖ ] , and let w : [ ϱ , ϖ ] R be symmetric as regards ϱ + ϖ 2 . If g is s-convex function, then for n N we have
R w g , Υ 2 2 s + 1 4 1 + s s + 2 w [ ϱ , ϖ ] , n 1 i = 0 i + 1 i 2 g i + g i + 1 .
Proof. 
Applying Corollary 5 on the subintervals i , i + 1 i = 0 , 1 , . . . , n 1 of the partition Υ , we obtain
g i + i + 1 2 i i + 1 w ( u ) d u i i + 1 w ( u ) g u d u
2 2 s + 1 i + 1 i 2 4 1 + s s + 2 w i , i + 1 , g i + g i + 1 .
Add the above inequalities for all i = 0 , 1 , . . . , n 1 and using the triangular inequality to obtain the desired result. □
Proposition 2. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ with 0 ϱ < ϖ and g L 1 [ ϱ , ϖ ] , and let w : [ ϱ , ϖ ] R be symmetric as regards ϱ + ϖ 2 . If g q is a s-convex function, then for n N we have
R g , Υ w [ ϱ , ϖ ] , 2 p + 1 1 p n 1 i = 0 i + 1 i 2 1 + s + 2 2 s 1 + s 2 1 q g i q + g i + 1 q 2 1 q .
Proof. 
Applying Corollary 12 on the subintervals i , i + 1 i = 0 , 1 , . . . , n 1 of the partition Υ , we obtain
g i + i + 1 2 i i + 1 w ( u ) d u i i + 1 w ( u ) g u d u
i + 1 i 2 2 p + 1 1 p w i , i + 1 , 1 + s + 2 2 s 1 + s 2 1 q g i q + g i + 1 q 2 1 q .
Add the above inequalities for all i = 0 , 1 , . . . , n 1 and using the triangular inequality to obtain the desired result. □
Proposition 3. 
Let g : [ ϱ , ϖ ] R be a differentiable function on ϱ , ϖ with 0 ϱ < ϖ and g L 1 [ ϱ , ϖ ] , and let w : [ ϱ , ϖ ] R be symmetric as regards ϱ + ϖ 2 . If g q is a s-convex function, then, for n N , we have
R g , Υ w a i , b , 4 1 + 2 2 s 1 + s s + 2 1 q n 1 i = 0 i + 1 i 2 g i q + g i + 1 q 1 q .
Proof. 
Applying Corollary 18 on the subintervals i , i + 1 i = 0 , 1 , . . . , n 1 of the partition Υ , we obtain
g i + i + 1 2 i i + 1 w ( u ) d u i i + 1 w ( u ) g u d u
i + 1 i 2 4 w i , i + 1 , 1 + 2 2 s 1 + s s + 2 1 q g i q + g i + 1 q 1 q .
Add the above inequalities for all i = 0 , 1 , . . . , n 1 and using the triangular inequality to obtain the desired result. □

4.2. Application to Special Means

Let ϱ , ϖ be two arbitrary real numbers:
The Arithmetic mean:
A ϱ , ϖ = ϱ + ϖ 2 .
The Logarithmic mean:
L ϱ , ϖ = ϖ ϱ ln ϖ ln ϱ , ϱ , ϖ > 0 , ϱ ϖ .
The p-Logarithmic mean:
L p ϱ , ϖ = ϖ p + 1 ϱ p + 1 p + 1 ϖ ϱ 1 p , ϱ , ϖ > 0 , ϱ ϖ and p R 1 , 0 .
Proposition 4. 
Let ϱ , ϖ R with 0 < ϱ < ϖ , then we have
A 3 2 ϱ , ϖ L 3 2 3 2 ϱ , ϖ ϖ ϱ 10 ϱ 1 2 + 3 ϱ + ϖ 2 1 2 + ϖ 1 2 .
Proof. 
Using Corollary 3 for function g k = k 3 2 whose derivative g k = 3 2 k 1 2 is 1 2 -convex. □
Proposition 5. 
Let ϱ , ϖ R with 0 < ϱ < ϖ , then we have
A 1 ϱ , ϖ L 1 ϱ , ϖ ϖ ϱ 3 12 2 ϱ + ϖ ϱ ϖ 1 2 + ϖ + 2 ϱ ϱ ϖ 1 2 .
Proof. 
Applying Corollary 17 with q = 2 to the function g k = 1 k whose derivative g k 2 = 1 k is P-function. □

5. Conclusions

In this study, we considered the weighted midpoint-type integral inequalities for s-convex first derivatives using Riemann–Liouville integrals operators, where the main novelties of the paper are provided by a new identity regarding the weighted midpoint-type inequalities being presented and some new fractional weighted midpoint-type inequalities for functions whose first derivatives are s-convex being established. Some special cases are derived and the applications of our results are provided.

Author Contributions

Writing—original draft preparation, N.N., F.A. and A.F.; writing—review and editing, K.B.; visualization, B.M.; supervision, K.Z.; project administration, T.R.; funding acquisition, T.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dragomir, S.S.; Pećarixcx, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
  2. Kaijser, S.; Nikolova, L.; Persson, L.-E.; Wedestig, A. Hardy-type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
  3. Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Fract. Calc. Nonlinear Syst. 2020, 1, 75–94. [Google Scholar] [CrossRef]
  4. Saker, S.H.; Abdou, D.M.; Kubiaczyk, I. Opial and Pólya type inequalities via convexity. Fasc. Math. 2018, 60, 145–159. [Google Scholar] [CrossRef]
  5. Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
  6. Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
  7. Mitroi, F.-C.; Nikodem, K.; Wąsowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstratio Math. 2013, 46, 655–662. [Google Scholar] [CrossRef] [Green Version]
  8. Pearce, C.E.M.; Pećarixcx, J. Inequalities for differentiable mappings with application to special means and quadrature formulæ. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef] [Green Version]
  9. Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
  10. İşcan, İ.; Set, E.; Özdemir, M.E. Some new general integral inequalities for P-functions. Malaya J. Mat. 2014, 2, 510–516. [Google Scholar]
  11. Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), 223–276, CISM Courses and Lect., 378; Springer: Vienna, Austria, 1997. [Google Scholar]
  12. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  13. Eskandari, Z.; Avazzadeh, Z.; Ghaziani, R.K.; Li, B. Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method. Math. Meth. Appl. Sci. 2022. [CrossRef]
  14. Li, B.; Zhang, Y.; Li, X.; Eskandari, Z.; He, Q. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J. Comp. Appl. Math. 2023, 426, 115089. [Google Scholar] [CrossRef]
  15. Li, B.; Liang, H.; He, Q. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 2021, 146, 110856. [Google Scholar] [CrossRef]
  16. Li, B.; Liang, H.; Shi, L. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 2022, 156, 111860. [Google Scholar] [CrossRef]
  17. Xu, C.; Rahman, M.; Baleanu, D. On fractional-order symmetric oscillator withoffset-boosting control. Nonlinear Anal. Model. Control. 2022, 27, 994–1008. [Google Scholar]
  18. Zhang, L.; Rahman, M.; Ahmad, S.; Riaz, M.B. Dynamics of fractional order delay model of coronavirus disease. AIMS Math. 2022, 7, 4211–4232. [Google Scholar] [CrossRef]
  19. Kalsoom, H.; Vivas-Cortez, M.; Latif, M.A.; Ahmad, H. Weighted midpoint Hermite-Hadamard-Fejér type inequalities in fractional calculus for harmonically convex functions. Fractal Fract. 2021, 5, 252. [Google Scholar]
  20. Kamouche, N.; Ghomrani, S.; Meftah, B. Fractional Simpson like type inequalities for differentiable s-convex functions. J. Appl. Math. Stat. Inform. 2022, 18, 73–91. [Google Scholar] [CrossRef]
  21. Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupa, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
  22. Khanna, N.; Zothansanga, A.; Kaushik, S.K.; Kumar, D. Some properties of fractional Boas transforms of wavelets. J. Math. 2021, 2021, 6689779. [Google Scholar] [CrossRef]
  23. Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
  24. Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
  25. Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Difference Equ. 2019, 2019, 454. [Google Scholar] [CrossRef]
  26. Set, E.; Gözpinar, A. A study on Hermite–Hadamard-type inequalities via new fractional conformable integrals. Asian-Eur. J. Math. 2021, 14, 2150016. [Google Scholar] [CrossRef]
  27. Liu, Z. On inequalities of Hermite-Hadamard type involving an s-convex function with applications. Issues Anal. 2016, 5, 3–20. [Google Scholar] [CrossRef]
  28. Azzouza, N.; Meftah, B. Some weighted integral inequalities for differentiable beta-convex functions. J. Interdiscip. Math. 2022, 25, 373–393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nasri, N.; Aissaoui, F.; Bouhali, K.; Frioui, A.; Meftah, B.; Zennir, K.; Radwan, T. Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry 2023, 15, 612. https://doi.org/10.3390/sym15030612

AMA Style

Nasri N, Aissaoui F, Bouhali K, Frioui A, Meftah B, Zennir K, Radwan T. Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry. 2023; 15(3):612. https://doi.org/10.3390/sym15030612

Chicago/Turabian Style

Nasri, Nassima, Fatima Aissaoui, Keltoum Bouhali, Assia Frioui, Badreddine Meftah, Khaled Zennir, and Taha Radwan. 2023. "Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions" Symmetry 15, no. 3: 612. https://doi.org/10.3390/sym15030612

APA Style

Nasri, N., Aissaoui, F., Bouhali, K., Frioui, A., Meftah, B., Zennir, K., & Radwan, T. (2023). Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions. Symmetry, 15(3), 612. https://doi.org/10.3390/sym15030612

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop