Inequalities for q-h-Integrals via ℏ-Convex and m-Convex Functions
Abstract
:1. Introduction and Preliminaries
2. Generalizations of the -Hadamard Inequalities
- (i)
- If f is symmetric about , , then we have the following inequality for left q-h-integrals:
- (ii)
- If f is symmetric about , , then we have the following inequality for right q-h-integrals:
- (i)
- By using the ℏ-convexity of f, the following inequality is yielded:
- (ii)
- Again, by using the ℏ-convexity of f, one can have the following inequality:
- (i)
- If , then we have
- (ii)
- If , then we have
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lazarević, M.P. Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling; Wseas Press: Attica, Greece, 2012. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus, Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex function. J. King Saud Univ. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex function. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Ogunmez, H.; Ozkan, U. Fractional quantum integral inequalities. J. Inequal. Appl. 2011, 2011, 787939. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Budak, H.; Nonlaopon, K. New quantum Mercer estimates of Simpson–Newton-like inequalities via convexity. Symmetry 2022, 14, 1935. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite–Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Bermudo, S.; Kórus, P.; Valdés, J.E.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Fractional (p,q)-calculus on finite intervals and some integral inequalities. Symmetry 2021, 13, 504. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agarwal, P. Some new Hermite-Hadamard and related inequalities for convex functions via (p,q)-Integral. Entropy 2021, 23, 828. [Google Scholar] [CrossRef] [PubMed]
- Varosanec, S. On ℏ-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization; Univ. Cluj-Napoca: Cluj Napoca, Romania, 1984; pp. 329–338. [Google Scholar]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard type inequalities for ℏ-convex functions. J. Math. Inequal. 2008, 2, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Afzal, Z. Further on quantum-plank derivatives and integrals in composite forms. Open J. Math. Anal. 2022, 6, 130–138. [Google Scholar]
- Liu, Y.; Farid, G.; Abuzaid, D.; Nonlaopon, K. On q-Hermite-Hadamard inequalities via q-h-integrals. Symmetry 2022, 14, 2648. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Anwar, M.; Farid, G.; Bibi, W. Inequalities for q-h-Integrals via ℏ-Convex and m-Convex Functions. Symmetry 2023, 15, 666. https://doi.org/10.3390/sym15030666
Chen D, Anwar M, Farid G, Bibi W. Inequalities for q-h-Integrals via ℏ-Convex and m-Convex Functions. Symmetry. 2023; 15(3):666. https://doi.org/10.3390/sym15030666
Chicago/Turabian StyleChen, Dong, Matloob Anwar, Ghulam Farid, and Waseela Bibi. 2023. "Inequalities for q-h-Integrals via ℏ-Convex and m-Convex Functions" Symmetry 15, no. 3: 666. https://doi.org/10.3390/sym15030666
APA StyleChen, D., Anwar, M., Farid, G., & Bibi, W. (2023). Inequalities for q-h-Integrals via ℏ-Convex and m-Convex Functions. Symmetry, 15(3), 666. https://doi.org/10.3390/sym15030666