Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction
Abstract
:1. Introduction
2. An Isospectral–Non-Isopectral Dirac Equation Integrable Hierarchy
3. Integrable Coupling of the Nonisospectral Dirac Hierarchy
4. Hamiltonian Structure of the Dirac Integrable Coupling
5. Self-Adjointness and Conservation Laws
6. Exact Solutions of Equation (12)
7. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magri, F. Nonlinear evolution equations and dynamical systems. In Springer Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1980; Volume 120, p. 233. [Google Scholar]
- Tu, G.Z. The trace identity, a powerful tool for constructing the hamiltonian structure of integrable systems. J. Math Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
- Ma, W.X. A new hierarchy of liouville integrable generalized hamiltonian equations and its reduction. Chin. Ann. Math. A 1992, 13, 115–123. [Google Scholar]
- Ma, W.X. A hierarchy of liouville integrable finite-dimensional hamiltonian systems. Appl. Math. Mech. 1992, 13, 369–377. [Google Scholar]
- Fan, E.G. Quasi-periodic waves and an asymptotic property for the asymmetrical nizhnik– novikov–veselov equation. J. Phys. A Math. Theor. 2009, 42, 095206. [Google Scholar] [CrossRef]
- Geng, X.G.; Ma, W.X. A multipotential generalization of the nonlinear diffusion equation. J. Phys. Soc. Jpn. 2000, 69, 985–986. [Google Scholar] [CrossRef]
- Hu, X.B. A powerful approach to generate new integrable systems. J. Phys. A Math. Gen. 1994, 27, 2497. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, H.Q. A direct method for integrable couplings of td hierarchy. J. Math. Phys. 2002, 43, 466–472. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.; Guo, F.K. Invertible linear transformations and the lie algebras. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 682–702. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H. Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations. J. Math. Phys. 2014, 54, 013516. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H. Generation of nonlinear evolution equations by reductions of the self-dual yang—Mills equations. Commun. Theor. Phys. 2014, 61, 203. [Google Scholar] [CrossRef]
- Qiao, Z.J. Algebraic structure of the operator related to stationary systems. Phys. Lett. A 1995, 206, 347–358. [Google Scholar] [CrossRef]
- Li, Y.S. A kind of evolution equations and the deform of spectral. Sci. Sin. A. 1982, 25, 385–387. [Google Scholar]
- Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Two nonisospectral integrable hierarchies and its integrable coupling. Int. J. Theor. Phys. 2020, 59, 2529–2539. [Google Scholar] [CrossRef]
- Lu, H.H.; Zhang, Y.F.; Mei, J.Q. A generalized isospectral–nonisospectral heat equation hierarchy and its expanding integrable model. Adv Differ Equ. 2020, 2020, 1–24. [Google Scholar] [CrossRef]
- Ma, W.X.; Meng, J.H.; Zhang, H.Q. Integrable couplings, variational identities and hamiltonian formulations. Glob. J. Math. Sci. 2012, 1, 1. [Google Scholar]
- Zhang, W.Y.; Ma, W.X. An so (3, r) counterpart of the dirac soliton hierarchy and its bi-integrable couplings. Int. J. Theor. Phys. 2014, 53, 4211–4222. [Google Scholar] [CrossRef]
- Manukure, S.; Ma, W.X. Bi-integrable couplings of a new soliton hierarchy associated with a non-semisimple lie algebra. Appl. Math. Comput. 2014, 245, 44–52. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, H.F. Integrable couplings of two expanded non-isospectral soliton hierarchies and their bi-hamiltonian structures. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250160. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A kind of nonisospectral and isospectral integrable couplings and their hamiltonian systems. Commun Nonlinear Sci Numer Simul. 2021, 99, 105822. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-hamiltonian structures associated with semi- 18 direct sums of lie algebras. J. Phys. A Math. Gen. 2006, 39, 10787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Fan, E.G.; Tam, H. A few expanding lie algebras of the lie algebra a1 and applications. Phys. Lett. A. 2006, 359, 471–480. [Google Scholar] [CrossRef]
- Qiao, Z.J. New hierarchies of isospectral and non-isospectral integrable nlees derived from the harry–dym spectral problem. Phys. A. 1998, 252, 377–387. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhu, G.C. New set of symmetries of the integrable equations, lie algebra and non-isospectral evolution equations. ii. akns system. J. Phys. A Math. Gen. 1986, 19, 3713. [Google Scholar]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. J. Phys. A Math. Theor. 2011, 44, 432002. [Google Scholar] [CrossRef]
- Hassan, M.M.; Abdel-Razek, M.A.; Shoreh, A.A. New exact solutions of some (2 + 1)-dimensional nonlinear evolution equations via extended kudryashov method. Rep. Math. Phys. 2014, 74, 347–358. [Google Scholar] [CrossRef]
- Kabir, M.M.; Khajeh, A.; Abdi, A.E.; Yousefi, K.A. Modified kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations. Math. Methods Appl. Sci. 2011, 34, 213–219. [Google Scholar] [CrossRef]
- Vitanov, N.K. Application of simplest equations of bernoulli and riccati kind for obtaining exact traveling-wave solutions for a class of pdes with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2050–2060. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. The multi-component nonisospectral KdV hierarchies associated with a novel kind of N-dimensional Lie algebra. arXiv 2022, arXiv:2201.03205. [Google Scholar]
- Ibragimov, N.H. Elementary Lie Group Analysis and Ordinary Differential Equations; Wiley: Chichester, UK, 1999; Volume 197. [Google Scholar]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhou, J.; Zhao, S.; Feng, B. Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction. Symmetry 2022, 14, 2489. https://doi.org/10.3390/sym14122489
Chen C, Zhou J, Zhao S, Feng B. Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction. Symmetry. 2022; 14(12):2489. https://doi.org/10.3390/sym14122489
Chicago/Turabian StyleChen, Cheng, Jian Zhou, Shiyin Zhao, and Binlu Feng. 2022. "Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction" Symmetry 14, no. 12: 2489. https://doi.org/10.3390/sym14122489
APA StyleChen, C., Zhou, J., Zhao, S., & Feng, B. (2022). Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction. Symmetry, 14(12), 2489. https://doi.org/10.3390/sym14122489