Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation
Abstract
:1. Introduction
2. Lie Symmetry Analysis of BO Equation
2.1. Direct Symmetry
2.2. Generalized Symmetry
3. Symmetry Reduction and Exact Solutions for BO Equation
3.1. Symmetry Reduction
3.2. Particular Solutions for BO Equation
4. Conservation Laws of BO Equation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, E.; Zhang, J. Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 2002, 305, 383–392. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos Solitons Fractals 2008, 38, 1505–1516. [Google Scholar] [CrossRef]
- He, J.H. Exp-function method for nonlinear wave equation. Chaos Solitions Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- He, J.H.; Abdou, M.A. New periodic solutions for nonlinear evolution equations using exp-function method. Chaos Soliton Fract 2007, 34, 1421–1429. [Google Scholar] [CrossRef]
- Zait, R.A. Bäcklund transformations, cnoidal wave and traveling wave solutions of the SK and KK equations. Chaos Solitons Fractals 2003, 15, 673–678. [Google Scholar] [CrossRef]
- Bai, C.L.; Bai, C.J.; Zhao, H. A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients. Z. Naturforsch 2005, 60, 211–220. [Google Scholar] [CrossRef]
- Wang, G.W. Symmetry analysis, analytical solutions and conservation laws of a general ized KdV-Burgers-Kuramoto equation and its fractional version. Fractals Complex Geom. Pattern Scaling Nat. Soc. 2021, 29, 2150101. [Google Scholar]
- Chen, Y.; Yan, Z.Y.; Zhang, H.Q. New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation. Phys. Lett. A 2003, 307, 107–113. [Google Scholar] [CrossRef]
- Izmailova, K.K.; Chupakhin, A.P. Group theoretical solutions of Schrodinger equation generated by three-dimensional symmetry algebras. Nelin. Dinam 2007, 3, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Golod, A.I.; Chupakhin, A.P. Invariant solution of dynamics of polytropic gas generated by three-dimensional algebras of symmetry. Sib. Èlektron. Mat. Izv. 2008, 5, 229–250. [Google Scholar]
- Tian, Y.H.; Chen, H.L.; Liu, X.Q. A simple direct method to find equivalence transformations of a generalized nonlinear Schrodinger equation and a generalized KdV equation. Appl. Math. Comput. 2010, 215, 3509–3514. [Google Scholar] [CrossRef]
- Wang, G.W.; Yang, K.T.; Gu, H.C.; Guan, F.; Kara, A.H. A (2+1)-dimensional sine-Gor don and sinh-Gordon equations with symmetries and kink wave solutions. Nucl. Phys. B 2020, 953, 114956. [Google Scholar] [CrossRef]
- Yan, Z.L.; Liu, X.Q.; Wang, L. The direct symmetry method and its application in variable coefficients Schrodinger equation. Appl. Math. Comput. 2007, 187, 701–707. [Google Scholar] [CrossRef]
- Yan, Z.L.; Liu, X.Q.; Yu, X.J. Classification and similarity solutions of variable coefficients Burgers equation. J. At. Mol. Phys. 2007, 24, 1239–1244. [Google Scholar]
- Yan, Z.L.; Zhou, J.P. New explicit solutions of (1+1)-dimensional variable-coefficient Broer-Kaup system. Commun. Theor. Phys. 2010, 54, 965–970. [Google Scholar]
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, 129–137. [Google Scholar] [CrossRef]
- Xin, X.P.; Liu, X.Q.; Zhang, L.L. Explicit solutions of the Bogoyavlensky-Konoplechenko equation. Appl. Math. Comput 2010, 215, 3669–3673. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, S. The JEFE method and periodic solutions of two kinds of nonlinear wave equations. Commun. Nonlinear Sci. Numer. Simulat. 2003, 8, 67–70. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D. A method for constructing exact solutions and application to Benjiamin Ono equation. Chin. Phys. 2005, 14, 2158–2163. [Google Scholar]
- Liu, H.Z.; Li, W.R. The exact analytic solutions of a nonlinear differential iterative equation. Nonlinear Anal. 2008, 69, 2466–2478. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, F. Analytic solutions of an iterative equation with first order derivative. Ann. Differ. Equ. 2005, 21, 337–342. [Google Scholar]
- Liu, H.; Li, W. Discussion on the analytic solutions of the second-order iterative differential equation. Bull. Korean Math. Soc. 2006, 43, 791–804. [Google Scholar] [CrossRef]
- Lu, D.C.; Hong, B.J. New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system. Appl. Math. Comput. 2008, 199, 572–580. [Google Scholar] [CrossRef]
- Nishitani, T.; Tajiri, M. On similarity solutions of the Boussinesq equation. Phys. Lett. A 1982, 89, 379–380. [Google Scholar] [CrossRef]
- Rosenau, P.; Schwarzmeier, J.L. On similarity solutions of Boussinesq-type equations. Phys. Lett. A 1986, 115, 75–77. [Google Scholar] [CrossRef]
- Levi, D.; Winternitz, P. Non-classical symmetry reduction: Example of the Boussinesq equation. J. Phys. Math. Gen. 1989, 22, 2915. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Self-adjointness and conservation laws of Burgers-type equations. Modern Phys. Lett. B 2021, 35, 2150161. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.W. A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivati on, symmetries and conservation laws. Appl. Math. Lett. 2021, 113, 106768. [Google Scholar] [CrossRef]
- Wang, G.W. A new (3+1)-dimensional Schrodinger equation: Derivation, soliton solution s and conservation laws. Nonlinear Dyn. 2021, 104, 1595–1602. [Google Scholar] [CrossRef]
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, L.; Hua, R.; Zhang, L.; Wang, H. Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation. Symmetry 2022, 14, 1315. https://doi.org/10.3390/sym14071315
Wang Z, Sun L, Hua R, Zhang L, Wang H. Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation. Symmetry. 2022; 14(7):1315. https://doi.org/10.3390/sym14071315
Chicago/Turabian StyleWang, Zhenli, Liangji Sun, Rui Hua, Lihua Zhang, and Haifeng Wang. 2022. "Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation" Symmetry 14, no. 7: 1315. https://doi.org/10.3390/sym14071315
APA StyleWang, Z., Sun, L., Hua, R., Zhang, L., & Wang, H. (2022). Lie Symmetry Analysis, Particular Solutions and Conservation Laws of Benjiamin Ono Equation. Symmetry, 14(7), 1315. https://doi.org/10.3390/sym14071315