[k]-Roman Domination in Digraphs
Abstract
:1. Introduction and Terminology
2. The [k]-RD-Number of a Connected Digraph with δ−(D) ≥ 1
3. Some Bounds of the [k]-RD-Number
4. Nordhaus–Gaddum Bounds on the [k]-RD-Number
5. Relations between the [k]-RD-Number and Other Domination Parameters
6. The [k]-RD-Numbers of the Directed Path and the Directed Cycle
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs: Advanced Topics; Marcel Dekker, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Caro, Y.; Henning, M.A. Directed domination in oriented graphs. Discret. Appl. Math. 2012, 160, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Ahangar, H.A.; Henning, M.A.; Lowenstein, C.; Zhao, Y.; Samodivkin, V. Signed Roman domination in graphs. J. Comb. Optim. 2014, 27, 241–255. [Google Scholar] [CrossRef]
- Karami, H.; Sheikholeslami, S.M.; Khodkar, A. A lower bounds on the signed domination numbers of directed graphs. Discret. Math. 2009, 309, 2567–2570. [Google Scholar] [CrossRef]
- Chambers, E.W.; Kinnersley, B.; Prince, N.; West, D.B. Extremal problems for Roman domination. SIAM J. Discret. Math. 2009, 23, 1575–1586. [Google Scholar] [CrossRef] [Green Version]
- Favaron, O.; Karami, H.; Khoeilar, R.; Sheikholeslami, S.M. On the Roman domination number of a graph. Discret. Math. 2009, 309, 3447–3451. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Fernau, H.; Sigarreta, J.M. The differential and the roman domination number of a graph. Appl. Anal. Discret. Math. 2014, 8, 155–171. [Google Scholar] [CrossRef]
- Cockayne, E.J.; Dreyer, P.A., Jr.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discret. Math. 2003, 266, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Poureidi, A.; Rad, N.J. On algorithmic complexity of double Roman domination. Discret. Appl. Math. 2020, 285, 539–551. [Google Scholar] [CrossRef]
- Ahangar, H.A.; Álvarez, M.P.; Chellali, M.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C. Triple Roman domination in graphs. Appl. Math. Comput. 2021, 391, 125444. [Google Scholar]
- Pour, F.N.; Ahangar, H.A.; Chellali, M.; Sheikholeslami, S.M. Global triple Roman dominating function. Discret. Appl. Math. 2022, 314, 228–237. [Google Scholar] [CrossRef]
- Hao, G.; Chen, X.; Volkmann, L. Double Roman Domination in Digraphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 1907–1920. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Li, R. The Roman domination of Kautz digraphs and generalized Kautz digraphs. Pure Appl. Func. Anal. 2023; in press. [Google Scholar]
- Zhang, X.; Guo, Y. The Roman domination numbers of the directed de Bruijn and generalized directed de Bruijn graphs. Open Math. 2023; in press. [Google Scholar]
- Harary, F.; Norman, R.Z.; Cartwright, D. Structural Models; Wiley: New York, NY, USA, 1965. [Google Scholar]
The Origin of the s In-Neighbours | The Bound of |
---|---|
all in-neighbours from | |
all in-neighbours from | |
all in-neighbours from | |
p in-neighbours from , | |
q in-neighbours from and | |
in-neighbours from | |
where |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Song, X.; Li, R. [k]-Roman Domination in Digraphs. Symmetry 2023, 15, 743. https://doi.org/10.3390/sym15030743
Zhang X, Song X, Li R. [k]-Roman Domination in Digraphs. Symmetry. 2023; 15(3):743. https://doi.org/10.3390/sym15030743
Chicago/Turabian StyleZhang, Xinhong, Xin Song, and Ruijuan Li. 2023. "[k]-Roman Domination in Digraphs" Symmetry 15, no. 3: 743. https://doi.org/10.3390/sym15030743
APA StyleZhang, X., Song, X., & Li, R. (2023). [k]-Roman Domination in Digraphs. Symmetry, 15(3), 743. https://doi.org/10.3390/sym15030743