A Transition Model in f(R,T) Theory via Observational Constraints
Abstract
:1. Introduction
2. A Brief View of Gravity
3. Metric and Field Equations
4. Solutions of the Field Equations with Varying Deceleration Parameter
5. Find Out Parameters Using Observational Data
5.1. Cosmic Chronometers Datasets
5.2. Pantheon Datasets
5.3. Observational Result
6. Cosmic Pressure, Matter Density and Equation of State Parameter
7. Cosmographic Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | Cosmic Chronometers |
MCMC | Markov Chain Monte Carlo |
FRW | Friedmann-Robertson-Walker |
BAO | Baryon acoustic oscillation |
BOSS | Baryon Oscillation Spectroscopy Survey |
ACTPol | Atacama Cosmology Telescope Polarimeters |
DE | Dark Energy |
EH | Einstein-Hilbert |
CDM | cold dark matter |
LRS | Locally rotationally symmetric |
References
- Perlmutter, S.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Pain, R.; et al. Measurements* of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35. Astrophys. J. 1997, 483, 565. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Strolger, L.G.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Gold, B.; Challis, P.J.; Filippenko, A.V.; Jha, S.; Li, W.; et al. New Hubble space telescope discoveries of type Ia supernovae at z ≥ 1: Narrowing constraints on the early behavior of dark energy. Astrophys. J. 2007, 659, 98. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, E.; Maddox, S.; Cole, S.; Lahav, O.; Madgwick, D.S.; Norberg, P.; Peacock, J.A.; Baldry, I.K.; Baugh, C.M.; Bland-Hawthorn, J.; et al. The 2dF Galaxy Redshift Survey: Correlation functions, peculiar velocities and the matter density of the Universe. Mon. Not. R. Astron. Soc. 2003, 346, 78–96. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.J.; Tegmark, M.; Zheng, Z.; et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Jain, B.; Taylor, A. Cross-correlation tomography: Measuring dark energy evolution with weak lensing. Phys. Rev. Lett. 2003, 91, 141302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-XIII: Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. arXiv 2017, arXiv:1607.03155. [Google Scholar] [CrossRef] [Green Version]
- Naess, S.; Hasselfield, M.; McMahon, J.; Niemack, M.D.; Addison, G.E.; Ade, P.A.; Allison, R.; Amiri, M.; Battaglia, N.; Beall, J.A.; et al. The Atacama cosmology telescope: CMB polarization at 200 < ℓ < 9000. arXiv 2014, arXiv:1405.5524. [Google Scholar]
- Nielsen, J.T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae. arXiv 2016, arXiv:1506.01354. [Google Scholar] [CrossRef] [Green Version]
- Shariff, H.; Jiao, X.; Trotta, R.; Van Dyk, D.A. BAHAMAS: New analysis of type Ia supernovae reveals inconsistencies with standard cosmology. arXiv 2016, arXiv:1510.05954. [Google Scholar] [CrossRef]
- Sahni, V. Dark matter and dark energy. arXiv 2004, arXiv:astro-ph/0403324. [Google Scholar]
- Padmanabhan, T. Dark energy and gravity. Gen. Relativ. Gravit. 2008, 40, 529–564. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Zerbini, S. Static spherically symmetric solutions in F(R) gravity. Eur. Phys. J. C 2011, 71, 1591. [Google Scholar] [CrossRef] [Green Version]
- Habib Mazharimousavi, S.; Halilsoy, M.; Tahamtan, T. Solutions for f (R) gravity coupled with electromagnetic field. Eur. Phys. J. C 2012, 72, 1851. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; SenGupta, S. Spherically symmetric brane spacetime with bulk f(R) gravity. Eur. Phys. J. C 2015, 75, 11. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S. Inflation in f(R,ϕ)-theories and mimetic gravity scenario. Eur. Phys. J. C 2015, 75, 444. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S. Cosmology from induced matter model applied to 5D f(R,T) theory. Astroph. Space Sci. 2014, 352, 273–279. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S. Cosmological solutions from induced matter model applied to 5D gravity and the shrinking of the extra coordinate. Eur. Phys. J. C 2015, 75, 168. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Zubair, M.S.M. Thermodynamics in f(R,T) theory of gravity. J. Cosm. Astropart. Phys. 2012, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Ribeiro, G.; Correa, R.A.C. A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of T in the f(R,T) formalism. Astroph. Space Sci. 2016, 361, 227. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP 2007, 86, 157. [Google Scholar] [CrossRef] [Green Version]
- Farhoudi, H.S.M. Cosmological and solar system consequences of f(R,T) gravity models. Phys. Rev. D 2014, 90, 044031. [Google Scholar]
- Deng, X.M.; Xie, Y. Solar system’s bounds on the extra acceleration of f(R,T) gravity revisited. Int. J. Theor. Phys. 2015, 54, 1739–1749. [Google Scholar] [CrossRef]
- Iorio, L. Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances. J. Cosmol. Astropart. Phys. 2011, 5, 019. [Google Scholar] [CrossRef] [Green Version]
- Fienga, A.; Laskar, J.; Kuchynka, P.; Manche, H.; Desvignes, G.; Gastineau, M.; Cognard, I.; Theureau, G. The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 2011, 111, 363. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Some FRW models of accelerating universe with dark energy. Astrophys. Space Sci. 2011, 332, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Myrzakulov, R. F(R) gravity and inflation. Int. J. Geom. Meth. Mod. Phys. 2015, 12, 1530003. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, R.; Shukla, A.K. A new class of Bianchi cosmological models in f(R,T) gravity. Astrophys. Space Sci. 2013, 343, 415–422. [Google Scholar] [CrossRef]
- Adhav, K.S. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity. Astrophys. Space Sci. 2012, 339, 365. [Google Scholar] [CrossRef]
- Samanta, G.C. Universe Filled with Dark Energy (DE) from a Wet Dark Fluid (WDF) in f(R,T) Gravity. Int. J. Theor. Phys. 2013, 52, 2303. [Google Scholar] [CrossRef]
- Reddy, D.R.K.; Santikumar, R.; Naidu, R.L. Bianchi Type III Cosmological Models in f(R,T) Theory of Gravity. Astrophys. Space Sci. 2012, 342, 249–252. [Google Scholar] [CrossRef]
- Reddy, D.R.K.; Naidu, R.L.; Satyanarayana, B. Kaluza-Klein Cosmological Model in f(R,T) Gravity. Int. J. Theor. Phys. 2012, 51, 3222–3227. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoğlu, D. Quadratically varying deceleration parameter in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2030003. [Google Scholar] [CrossRef]
- Singh, C.P.; Singh, V. Reconstruction of modified f(R,T) gravity with perfect fluid cosmological models. Gen. Rel. Grav. 2014, 46, 1696. [Google Scholar] [CrossRef]
- Rao, V.U.M.; Sireesha, K.V.S.; Rao, D.C.P. Perfect fluid cosmological models in a modified theory of gravity. Eur. Phys. J. Plus 2014, 129, 17. [Google Scholar] [CrossRef]
- Sharma, N.K.; Singh, J.K. Bianchi Type-II String Cosmological Model with Magnetic Field in f (R, T) Gravity. Int. J. Theor. Phys. 2014, 53, 2912–2922. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Isik, R.; Shukla, B.K.; Baysazan, E. Non-minimally coupled transit cosmology in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250118. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Mishra, S.K.; Beesham, A. Anisotropic Model with Constant Jerk Parameter in f(R,T) Gravity. Gravit. Cosmol. 2022, 28, 196–203. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Mishra, B.; Reddy, G.C. Axially symmetric cosmological model in f(R,T) gravity. Eur. Phys. J. Plus 2014, 129, 49. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoğlu, D.; Dubey, V.K. Phase transition of LRS Bianchi type-I cosmological model in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050187. [Google Scholar] [CrossRef]
- Nagpal, R.; Pacif, S.K.J.; Singh, J.K.; Bamba, K.; Beesham, A. Analysis with observational constraints in Λ-cosmology in f(R,T) gravity. Eur. Phys. J. C 2018, 78, 946. [Google Scholar] [CrossRef] [Green Version]
- Debnath, P.S.; Paul, B.C. Observational constraints of emergent universe in f(R,T) gravity with bulk viscosity. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050102. [Google Scholar] [CrossRef]
- Rudra, P.; Giri, K. Observational constraint in f(R,T) gravity from the cosmic chronometers and some standard distance measurement parameters. Nucl. Phys. B 2021, 967, 115428. [Google Scholar] [CrossRef]
- Sardar, G.; Bose, A.; Chakraborty, S. Observational constraints on f(R,T) gravity with f(R,T) = R + h(T). Eur. Phys. J. C 2023, 83, 41. [Google Scholar] [CrossRef]
- Sofuoğlu, D.; Tiwari, R.K.; Abebe, A.; Alfedeel, A.H.A.; Hassan, E.I. f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime. Physics 2022, 4, 1348–1358. [Google Scholar] [CrossRef]
- Magana, J.; Amante, M.H.; Garcia-Aspeitia, M.A.; Motta, V. The Cardassian expansion revisited: Constraints from updated Hubble parameter measurements and type Ia supernova data. Mon. Not. R. Astron. Soc. 2018, 476, 1036–1049. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Goswami, G.K. Cosmological parameters for spatially flat dust filled Universe in Brans-Dicke theory. Res. Astron. Astrophys. 2017, 17, 27. [Google Scholar] [CrossRef]
Datasets | Parameters | Model |
---|---|---|
CC | , | , |
SN | , | , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, R.K.; Shukla, B.K.; Sofuoğlu, D.; Kösem, D. A Transition Model in f(R,T) Theory via Observational Constraints. Symmetry 2023, 15, 788. https://doi.org/10.3390/sym15040788
Tiwari RK, Shukla BK, Sofuoğlu D, Kösem D. A Transition Model in f(R,T) Theory via Observational Constraints. Symmetry. 2023; 15(4):788. https://doi.org/10.3390/sym15040788
Chicago/Turabian StyleTiwari, Rishi Kumar, Bhupendra Kumar Shukla, Değer Sofuoğlu, and Dilay Kösem. 2023. "A Transition Model in f(R,T) Theory via Observational Constraints" Symmetry 15, no. 4: 788. https://doi.org/10.3390/sym15040788
APA StyleTiwari, R. K., Shukla, B. K., Sofuoğlu, D., & Kösem, D. (2023). A Transition Model in f(R,T) Theory via Observational Constraints. Symmetry, 15(4), 788. https://doi.org/10.3390/sym15040788