Evolution of Generalized Brans–Dicke Parameter within a Superbounce Scenario
Abstract
:1. Introduction
2. Basic Equations
3. Superbounce Scenario
4. Evolution of the Brans–Dicke Parameter
4.1. Case 1
4.1.1. Case I
4.1.2. Case II
4.2. Case 2
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V.; Chibisov, G. Quantum fluctuations and a nonsingular universe. JETP Lett. 1981, 33, 532. [Google Scholar]
- Brandenberger, R. Alternatives to the Inflationary Paradigm of structure formation. Int. J. Mod. Phys. Conf. Ser. 2011, 1, 67. [Google Scholar] [CrossRef] [Green Version]
- Bars, I.; Chen, S.H.; Turok, N. Geodesically complete analytic solutions for a cyclic universe. Phys. Rev. D 2011, 84, 083513. [Google Scholar] [CrossRef] [Green Version]
- Bars, I.; Chen, S.H.; Stenhardt, P.J.; Turok, N. Antigravity and the big crunch/big bang transition. Phys. Lett. B 2012, 715, 218. [Google Scholar] [CrossRef] [Green Version]
- Novello, M.; Bergliaffa, S.E.P. Bouncing cosmologies. Phys. Rep. 2008, 463, 127. [Google Scholar] [CrossRef]
- Battefeld, D.; Peter, P. A Critical Review of Classical Bouncing Cosmologies. arXiv 2014, arXiv:1406.2790. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R. The Matter Bounce Alternative to Inflationary Cosmology. arXiv 2012, arXiv:1206.4196. [Google Scholar]
- Brandenberger, R.; Peter, P. Bouncing Cosmologies: Progress and Problems. Found. Phys. 2017, 47, 797. [Google Scholar] [CrossRef] [Green Version]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. Galileon as a local modification of gravity. Phys. Rev. D 2009, 79, 064036. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant Galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Kobayashi, T. Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem. Phys. Rev. D 2016, 94, 043511. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Pirtskhalava, D.; Santoni, L.; Trincherini, E. Stability of geodesically complete cosmologies. J. Cosmol. Astropart. Phys. 2016, 11, 047. [Google Scholar] [CrossRef]
- Cai, Y.; Piao, Y. A covariant Lagrangian for stable nonsingular bounce. JHEP 2017, 9, 27. [Google Scholar] [CrossRef]
- Cai, Y.; Wan, Y.; Li, H.-G.; Qiu, T.; Piao, Y.-S. The Effective Field Theory of nonsingular cosmology. JHEP 2017, 01, 090. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Li, H.-G.; Qiu, T.; Piao, Y.-S. The effective field theory of nonsingular cosmology: II. Eur. Phys. J. C 2017, 77, 369. [Google Scholar] [CrossRef]
- Ilyas, A.; Zhu, M.; Zheng, Y.; Cai, Y.; Saridakis, E.N. DHOST bounce. J. Cosmol. Astropart. Phys. 2020, 09, 002. [Google Scholar] [CrossRef]
- Zhu, M.; Ilyas, A.; Zheng, Y.; Cai, Y.; Saridakis, E.N. Scalar and Tensor Perturbations in DHOST Bounce Cosmology. J. Cosmol. Astropart. Phys. 2021, 11, 045. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Nojiri, S.; Odintsov, S.D. Bounce cosmology from F(R) gravity and F(R) bigravity. J. Cosmol. Astropart. Phys. 2014, 01, 008. [Google Scholar] [CrossRef]
- Chakraborty, S. Reconstruction method of f(R) gravity for isotropic and anisotropic spacetimes. Phys. Rev. D 2018, 98, 024009. [Google Scholar] [CrossRef] [Green Version]
- Amani, A.R. The bouncing cosmology with F(R) gravity and its reconstructing. Int. J. Mod. Phys. D 2016, 25, 1650071. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Ribeiro, G.; Moraes, P.H.R.S. De Sitter and bounce solutions from anisotropy in extended gravity cosmology. Mod. Phys. Lett. A 2019, 34, 1950321. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Khuntia, R.K.; Parida, P. Bouncing cosmology in an extended theory of gravity. Eur. Phys. J. Plus 2019, 134, 504. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Mishra, B.; Ray, S.; Sengupta, R. Bouncing universe models in an extended gravity theory. Chin. J. Phys. 2021, 71, 610. [Google Scholar] [CrossRef]
- Agrawal, A.S.; Tello-Ortiz, F.; Mishra, B.; Tripathy, S.K. Bouncing Cosmology in Extended Gravity and Its Reconstruction as Dark Energy Model. Forschritte Phys. 2021, 2021, 2100065. [Google Scholar] [CrossRef]
- Agrawal, A.S.; Tripathy, S.K.; Pal, S.; Mishra, B. Role of Extended Gravity Theory in Matter Bounce Dynamics. Phys. Scr. 2022, 97, 025002. [Google Scholar] [CrossRef]
- Singh, J.K.; Bamba, K.; Nagpal, R.; Pacif, S.K.J. Bouncing cosmology in f(R,T) gravity. Phys. Rev. D 2018, 97, 123536. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.S.; Pati, L.; Tripathy, S.K.; Mishra, B. Matter bounce scenario and the dynamical aspects in f(Q,T) gravity. Phys. Dark Univ. 2021, 33, 100863. [Google Scholar] [CrossRef]
- Cai, Y.F.; Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Matter bounce cosmology with the f(T) gravity. Class. Quantum Grav. 2011, 28, 215011. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Dombriz, A.; Farrugia, G.; Said, J.L.; Gómez, D. Sáez-Chillón, Cosmological bouncing solutions in extended teleparallel gravity theories. Phys. Rev. D 2018, 97, 104040. [Google Scholar] [CrossRef] [Green Version]
- Saikh, A.; Tarai, S.; Tripathy, S.K.; Mishra, B. Bouncing cosmological model with general relativistic hydrodynamics in extended gravity. Int. J. Geom. Methods Phys. 2022, 19, 2250193. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Pandey, S.; Sendha, A.P.; Behera, D. Bouncing scenario in Brans–Dicke theory. Int. J. Geom. Methods Phys. 2020, 17, 2050056. [Google Scholar] [CrossRef]
- Tello-Ortiz, F.; Maurya, S.K.; Errehymy, A.; Singh, K.N.; Daoud, M. Anisotropic relativistic fluid spheres: An embedding class I approach. Eur. Phys. J. C 2019, 79, 885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, J.; Liu, T.; Zhao, W.; Wang, A. Testing Brans-Dicke gravity using the Einstein telescope. Phys. Rev. D 2017, 95, 124008. [Google Scholar] [CrossRef] [Green Version]
- Tirandari, M.; Saaidi, K. Anisotropic inflation in Brans-Dicke gravity. Nucl. Phys. B 2017, 925, 403. [Google Scholar] [CrossRef]
- Kim, H. Brans-Dicke theory as a unified model for dark matter-dark energy. Mon. Not. Roy. Astron. Soc. 2005, 364, 813. [Google Scholar] [CrossRef] [Green Version]
- Durk, J.; Clifton, T. Discrete Cosmological Models in the Brans-Dicke Theory of Gravity. Class. Quant. Gravit. 2019, 36, 185011. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Nashed, G.G.L.; Hanafy, W.E.; Ibraheem, S.K. Bounce inflation in f(T) cosmology: A unified inflaton-quintessence field. Phys. Rev. D 2016, 94, 083513. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Jarv, L.; Ualikhanova, U. Dynamical systems approach and generic properties of f(T) cosmology. Phys. Rev. D 2017, 96, 043508. [Google Scholar] [CrossRef] [Green Version]
- Nordtvedt, K., Jr. Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences. Astrophys. J. 1970, 161, 1059. [Google Scholar] [CrossRef]
- Wagoner, R.V. Scalar-Tensor Theory and Gravitational Waves. Phys. Rev. D 1970, 1, 3209. [Google Scholar] [CrossRef]
- Freund, P.G.O. Kaluza-Klein cosmologies. Nucl. Phys. B 1982, 209, 146. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Super String Theory; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Tripathy, S.K.; Behera, D.; Mishra, B. Unified dark fluid in Brans–Dicke theory. Eur. Phys. J. C 2015, 75, 149. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Singh, L.P. Time Dependence of Brans-Dicke parameter ω for an expanding Universe. Mod. Phys. Lett. A 2002, 17, 2409. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models. J. Cosmol. Astropart. Phys. 2012, 1202, 007. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebzadeh, B.; Karami, K. Generalized Brans–Dicke inflation with a quartic potential. Nucl. Phys. B 2017, 918, 1. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Pradhan, S.K.; Naik, Z.; Behera, D.; Mishra, B. Unified Dark Fluid and Cosmic Transit Models in Brans-Dicke Theory. Phys. Dark Univ. 2020, 30, 100722. [Google Scholar] [CrossRef]
- Sharif, M.; Waheed, S. Cosmic Acceleration and Brans-Dicke Theory. J. Exptl. Theor. Phys. 2012, 115, 599. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, W.; Debnath, U. Role of Brans-Dicke Theory with or without Self-Interacting Potential in Cosmic Acceleration. Int. J. Theor. Phys. 2009, 48, 232. [Google Scholar] [CrossRef]
- Koehn, M.; Lehners, J.L.; Ovrut, B.A. Cosmological super-bounce. Phys. Rev. D 2014, 90, 025005. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.K. Superbounce and Loop Quantum Cosmology Ekpyrosis from Modified Gravity. arXiv 2014, arXiv:1412.4343. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Sangwan, A.; Jassal, H.K. Dark energy equation of state parameter and its evolution at low redshift. J. Cosmol. Astropart. Phys. 2017, 2017, 012. [Google Scholar] [CrossRef] [Green Version]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. Ser. 2013, 208, 19. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J. 2010, 716, 712. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Goswami, G.K.; Yadav, A.K.; Mishra, B.; Tripathy, S.K. Modeling of Accelerating Universe with Bulk Viscous Fluid in Bianchi V Space-Time. Fortscr. Phys. 2021, 2021, 2100007. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Paul, T. Bouncing Universe with finite time singularity. Universe 2022, 8, 292. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Towards a smooth unification from an ekpyrotic bounce to the dark energy era. Phys. Dark Univ. 2022, 35, 100984. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Paul, T.; Banerjee, I.; Myrzakulov, R.; SenGupta, S. Unifying an asymmetric bounce to the dark energy in Chern–Simons F(R) gravity. Phys. Dark Univ. 2021, 33, 100864. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathy, S.K.; Pradhan, S.K.; Barik, B.; Naik, Z.; Mishra, B. Evolution of Generalized Brans–Dicke Parameter within a Superbounce Scenario. Symmetry 2023, 15, 790. https://doi.org/10.3390/sym15040790
Tripathy SK, Pradhan SK, Barik B, Naik Z, Mishra B. Evolution of Generalized Brans–Dicke Parameter within a Superbounce Scenario. Symmetry. 2023; 15(4):790. https://doi.org/10.3390/sym15040790
Chicago/Turabian StyleTripathy, Sunil Kumar, Sasmita Kumari Pradhan, Biswakalpita Barik, Zashmir Naik, and B. Mishra. 2023. "Evolution of Generalized Brans–Dicke Parameter within a Superbounce Scenario" Symmetry 15, no. 4: 790. https://doi.org/10.3390/sym15040790
APA StyleTripathy, S. K., Pradhan, S. K., Barik, B., Naik, Z., & Mishra, B. (2023). Evolution of Generalized Brans–Dicke Parameter within a Superbounce Scenario. Symmetry, 15(4), 790. https://doi.org/10.3390/sym15040790