Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions
Abstract
:1. Introduction
2. Preliminaries and Background
- (Associativie w.r.t addition) ∀
- (Commutative w.r.t addition) ∀
- (Additive element) ∀
- (Law of Cancellation) ∀
- (Associative w.r.t multiplication) ∀
- (Commutative w.r.t multiplication) ∀
- (Unity element) ∀
3. Stochastic Process
Properties of the Stochastic Process
- continuous over interval ℑ if , one has
- For the continuity in mean square sense over interval ℑ, if , one has
- For the differentiability in mean square sense at any arbitrary point , if there is a random variable , then this is true.
- For the mean-square integral over ℑ, if , and . Let , is a partition of . Let . A random variable is mean-square integrable over , and if this holds true,
4. Main Results
- (i)
- If , Definition 5 incorporates the output in the sense of a stochastic process for the P-function.
- (ii)
- If , Definition 5 incorporates the output in the sense of a stochastic process for the function.
- (iii)
- If , Definition 5 incorporates the output in the sense of a stochastic process for the usual convex function.
- (iv)
- If , Definition 5 incorporates the output in the sense of a stochastic process for the s-convex function.
4.1. Stochastically Hermite–Hadamard Inclusions
4.2. Stochastically Ostrowski-Type Inclusions
4.3. Stochastically Jensen-Type Inclusion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, S.N.; Raza, M.; Xin, Q.; Sokół, J.; Manzoor, R.; Zainab, S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry 2021, 13, 2321. [Google Scholar] [CrossRef]
- Shi, H.-N.; Du, W.-S. Schur-Power Convexity of a Completely Symmetric Function Dual. Symmetry 2019, 11, 897. [Google Scholar] [CrossRef] [Green Version]
- Mnif, M.; Pham, H. Stochastic optimization under constraints. Stoch. Processes Their Appl. 2001, 93, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Lau, V.K.; Kananian, B. Stochastic successive convex approximation for non-convex constrained stochastic optimization. IEEE Trans. Signal Process. 2019, 67, 4189–4203. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, G. Analyzing Non-Markovian Systems by Using a Stochastic Process Calculus and a Probabilistic Model Checker. Mathematics 2023, 11, 302. [Google Scholar] [CrossRef]
- Preda, V.; Catana, L.-I. Tsallis Log-Scale-Location Models. Moments, Gini Index and Some Stochastic Orders. Mathematics 2021, 9, 1216. [Google Scholar] [CrossRef]
- Mohd Aris, M.N.; Daud, H.; Mohd Noh, K.A.; Dass, S.C. Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging. Mathematics 2021, 9, 935. [Google Scholar] [CrossRef]
- Moore, R.E. Method and Applications of Interval Analysis; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1979. [Google Scholar]
- Markov, S. Calculus for interval functions of real variable. Computing 1979, 22, 325–385. [Google Scholar] [CrossRef]
- Xiang, Y.; Shi, Z. Interval Analysis of Vibro-Acoustic Systems by the Enclosing Interval Finite-Element Method. Appl. Sci. 2022, 12, 3061. [Google Scholar] [CrossRef]
- Shahid, M.; Javed, H.M.A.; Ahmad, M.I.; Qureshi, A.A.; Khan, M.I.; Alnuwaiser, M.A.; Ahmed, A.; Khan, M.A.; Tag-ElDin, E.S.M.; Shahid, A.; et al. A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials. Nanomaterials 2022, 12, 3413. [Google Scholar] [CrossRef]
- Tag El Din, E.S.; Gilany, M.; Abdel Aziz, M.M.; Ibrahim, D.K. A Wavelet-Based Fault Location Technique for Aged Power Cables. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 16 June 2005; IEEE: San Francisco, CA, USA, 2005; pp. 430–436. [Google Scholar]
- Bafakeeh, O.T.; Raghunath, K.; Ali, F.; Khalid, M.; Tag-ElDin, E.S.M.; Oreijah, M.; Guedri, K.; Khedher, N.B.; Khan, M.I. Hall Current and Soret Effects on Unsteady MHD Rotating Flow of Second-Grade Fluid through Porous Media under the Influences of Thermal Radiation and Chemical Reactions. Catalysts 2022, 12, 1233. [Google Scholar] [CrossRef]
- Al-Dawody, M.F.; Maki, D.F.; Al-Farhany, K.; Flayyih, M.A.; Jamshed, W.; Tag El Din, E.S.M.; Raizah, Z. Effect of Using Spirulina Algae Methyl Ester on the Performance of a Diesel Engine with Changing Compression Ratio: An Experimental Investigation. Sci. Rep. 2022, 12, 18183. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Rufian-Lizana, A.; Roman-Flores, H.; Jimenez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Osuna-Gomez, R.; Chalco-Cano, Y.; Rufián-Lizana, A.; Hernandez-Jimenez, B. Necessary and sufficient conditions for fuzzy optimality problems. Fuzzy Sets Syst. 2016, 296, 112–123. [Google Scholar] [CrossRef]
- Wu, H.C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 2007, 176, 46–59. [Google Scholar] [CrossRef]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par, Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Nikodem, K. On convex stochastic processes. Aequat. Math. 1980, 20, 184–197. [Google Scholar] [CrossRef]
- Skowroński, A. On some properties of J-convex stochastic processes. Aequat. Math. 1992, 44, 249–258. [Google Scholar] [CrossRef]
- Kotrys, D. Hermite–Hadmard inequality for convex stochastic processes. Aequat. Math. 2012, 83, 143–151. [Google Scholar] [CrossRef]
- Kotrys, D. Remarks on strongly convex stochastic processes. Aequat. Math. 2013, 86, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hao, Z. On Hermite–Hadmard inequlity for h-convex stochastic processes. Aequat. Math. 2017, 91, 909–920. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. A new Hermite–Hadamard inequality for h-convex stochastic processes. RGMIA Res. Rep. Collect. 2016, 19, 30. [Google Scholar] [CrossRef]
- Okur, N.; İscan, İ.; Dizdar, E.Y. Hermite–Hadmard type inequalities for harmonically convex stochastic processes. Int. Econ. Adm. Stud. 2018, 18, 281–292. [Google Scholar]
- González, L.; Kotrys, D.; Nikodem, K. Separation by convex and strongly convex stochastic processes. Publ. Math. Debrecen 2016, 3, 365–372. [Google Scholar] [CrossRef]
- Haq, W.U.; Kotrys, D. On symmetrized stochastic convexity and the inequalities of Hermite–Hadmard type. Aequat. Math. 2021, 95, 821–828. [Google Scholar] [CrossRef]
- Almutairi, O.; Kilicman, A. Generalized Fejer–Hermite–Hadamard type via generalized (h − m)-convexity on fractal sets and applications. Chaos Solitons Fractals 2021, 147, 110938. [Google Scholar] [CrossRef]
- Zhou, H.; Saleem, M.S.; Ghafoor, M.; Li, J. Generalization of h-convex stochastic processes and some classical inequalities. Math. Probl. Eng. 2020, 1, 1583807. [Google Scholar] [CrossRef]
- Fu, H.; Saleem, M.S.; Nazeer, W.; Ghafoor, M.; Li, P. On Hermite–Hadamard type inequalities for η-polynomial convex stochastic processes. Aims Math. 2021, 6, 6322–6339. [Google Scholar] [CrossRef]
- Tunc, M. Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013, 326. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, L.; Materano, J.; Lopez, M.V. Ostrowski-Type inequalities via h-convex stochastic processes. JP J. Math. Sci. 2016, 15, 15–29. [Google Scholar]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite–Hadamard Type Inequalities for Interval (h1,h2)-Convex Functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.R.; Neogy, S.K. On Invex Sets and Preinvex Functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski-type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Budak, H.; Kashuri, A.; Butt, S. Fractional Ostrowski-type Inequalities for Interval Valued Functions. Filomat 2022, 36, 2531–2540. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some New Concepts Related to Fuzzy Fractional Calculus for up and down Convex Fuzzy-Number Valued Functions and Inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Afzal, W.; Botmart, T. Some novel estimates of Jensen and Hermite–Hadamard inequalities for h-Godunova–Levin stochastic processes. Aims Math. 2023, 8, 7277–7291. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (CR) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically CR-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Treanţă, S.; Nonlaopon, K. Jensen and Hermite–Hadamard type inclusions for harmonical h-Godunova–Levin functions. AIMS Math. 2023, 8, 3303–3321. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation. Appl. Math. Inf. Sci. 2021, 15, 459–470. [Google Scholar]
- Afzal, W.; Alb Lupaş, A.; Shabbir, K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1,h2)-Godunova–Levin Interval-Valued Functions. Mathematics 2022, 10, 2970. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T. Generalized version of Jensen and Hermite–Hadamard inequalities for interval-valued (h1,h2)-Godunova–Levin functions. AIMS Math. 2022, 7, 19372–19387. [Google Scholar] [CrossRef]
- Bai, H.; Saleem, M.S.; Nazeer, W.; Zahoor, M.S.; Zhao, T. Hermite–Hadamard-and Jensen-type inequalities for interval nonconvex function. J. Math. 2020, 2020, 3945384. [Google Scholar] [CrossRef] [Green Version]
- Afzal, W.; Nazeer, W.; Botmart, T.; Treanţă, S. Some properties and inequalities for generalized class of harmonical Godunova–Levin function via center radius order relation. AIMS Math. 2022, 8, 1696–1712. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Shabbir, K.; Treanţă, S.; De La Sen, M. Some Novel Estimates of Hermite–Hadamard and Jensen-type Inequalities for (h1,h2)-Convex Functions Pertaining to Total Order Relation. Mathematics 2022, 10, 4777. [Google Scholar] [CrossRef]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard-Type Inequalities for Interval-Valued Functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, e3830324. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Abbas, M.; Treanţă, S.; De La Sen, M. Some New Generalizations of Integral Inequalities for Harmonical cr-(h1,h2)-Godunova–Levin Functions and Applications. Mathematics 2022, 10, 4540. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T.; Treanţă, S.; Afzal, W.; Shabbir, K.; Botmart, T.; Treanţă, S. Some New Estimates of Well Known Inequalities for (h1,h2)-Godunova–Levin Functions by Means of Center-Radius Order Relation. Aims Math. 2023, 8, 3101–3119. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Mani, G.; Gnanaprakasam, A.J.; Abdelnaby, O.A.A.; Stojiljković, V.; Radojevic, S.; Radenović, S. Fixed Points on Covariant and Contravariant Maps with an Application. Mathematics 2022, 10, 4385. [Google Scholar] [CrossRef]
- Stojiljković, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some Novel Inequalities for LR-(k,h-m)-p Convex Interval Valued Functions by Means of Pseudo Order Relation. Fractal Fract. 2022, 6, 726. [Google Scholar] [CrossRef]
- Li, F.; Liu, J.; Yan, Y.; Rong, J.; Yi, J. A Time-Variant Reliability Analysis Method Based on the Stochastic Process Discretization under Random and Interval Variables. Symmetry 2021, 13, 568. [Google Scholar] [CrossRef]
- Wang, C.; Gao, W.; Song, C.; Zhang, N. Stochastic Interval Analysis of Natural Frequency and Mode Shape of Structures with Uncertainties. J. Sound Vib. 2014, 333, 2483–2503. [Google Scholar] [CrossRef]
- Wu, L.; Shahidehpour, M.; Li, Z. Comparison of Scenario-Based and Interval Optimization Approaches to Stochastic SCUC. IEEE Trans. Power Syst. 2012, 27, 913–921. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H.; Yang, B.T. An Interval-Valued Fuzzy-Stochastic Programming Approach and Its Application to Municipal Solid Waste Management. Environ. Model. Softw. 2012, 29, 24–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Prosviryakov, E.Y.; El-Deeb, S.M.; Almalki, Y. Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry 2023, 15, 831. https://doi.org/10.3390/sym15040831
Afzal W, Prosviryakov EY, El-Deeb SM, Almalki Y. Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry. 2023; 15(4):831. https://doi.org/10.3390/sym15040831
Chicago/Turabian StyleAfzal, Waqar, Evgeniy Yu. Prosviryakov, Sheza M. El-Deeb, and Yahya Almalki. 2023. "Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions" Symmetry 15, no. 4: 831. https://doi.org/10.3390/sym15040831
APA StyleAfzal, W., Prosviryakov, E. Y., El-Deeb, S. M., & Almalki, Y. (2023). Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry, 15(4), 831. https://doi.org/10.3390/sym15040831