Double-Controlled Quasi M-Metric Spaces
Abstract
:1. Introduction
- 1.
- if, and only if for all
- 2.
- for all
- 3.
- for all .
- The pair is a called a Double-Controlled metric-type space.
- 1.
- if, and only if ,
- 2.
- .
- A pair is called a -metric space.
- 1.
- if, and only if for all
- 2.
- for all .
- The pair is called a Double-Controlled quasi metric-type space.
- 1.
- if, and only if ,
- 2.
- ,
- 3.
- 4.
- .
- A pair is called a partial metric space.
- 1.
- .
- 2.
- .
- 1.
- if, and only if ,
- 2.
- ,
- 3.
- 4.
- .
- A pair is called a M-metric space.
- 1.
- .
- 2.
- .
- 1.
- if, and only if ,
- 2.
- ,
- 3.
- .
- A pair is called a Double-Controlled quasi M-metric space.
- 1.
- 2.
- 3.
2. Topology of Double-Controlled Quasi -Metric Space
- 1.
- The forward open ball centered at g is defined as
- 2.
- The backward open ball centered at g is defined as
- 1.
- Then the sequence converges to a point from the left if, and only if
- 2.
- Then the sequence converges to a point from the right if, and only if
- 3.
- The sequence converges to a point if, and only if it converges to g from the left, and from the right.
- 1.
- the sequence is left ζ-Cauchy if, and ifandexist finitely.
- 2.
- the sequence is right ζ-Cauchy if, and only ifandexist finitely
- 3.
- the sequence is ζ-Cauchy if, and only if it is both left ζ-Cauchy and right ζ-Cauchy.
- 1.
- is left ζ-complete, with respect to forward topology , if every left ζ-Cauchy sequence converges to a point such thatand
- 2.
- is right ζ-complete, with respect to forward topology , if every left ζ-Cauchy sequence converges to a point such thatand
- 3.
- is ζ-complete, with respect to forward topology , if, and only if is both left ζ-complete and right ζ-complete.
- 1.
- F is left ζ-continuous if, and only if for each sequence in converging to from the left implies that converges to from the left, that is, we have,
- 2.
- F is right ζ-continuous if, and only for each sequence in converging to from the right implies that converges to from the right, that is, we have,
- 3.
- F is ζ-continuous if it is both left and right ζ-continuous.
3. Main Result
4. Applications
- 1.
- 2.
- for all
5. Conclusions and Open Problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations intgrales. Fundam. Math. 1922, 3, 133181. [Google Scholar] [CrossRef]
- Long-Guang, H.; Xian, Z. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar]
- Shatanawi, W. On w-compatible mappings and common coupled coincidence point in cone metric spaces. Appl. Math. Lett. 2012, 25, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Rajic, R.V.; Radenovic, S.; Al-Rawashhdeh, A. Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces. FIxed Point Theory Appl. 2012, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Asim, M.; Khan, A.R.; Imdad, M. Fixed point results in partial symmetric spaces with an application. Axioms 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Asim, M.; Imdad, M. Partial JS-metric spaces and fixed fixed point results. Indian J. Math. 2019, 61, 175–186. [Google Scholar]
- Asadi, M.; Karapınar, E.; Salimi, P. New extension of p-metric spaces with some fixed-point results on M-metric spaces. J. Inequal. Appl. 2014, 2014, 18. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Zarrad, A.; Souayah, N.; Mukheimer, A. Thabet Abdeljawed Fixed point theorems in Mb-metric spaces. J. Math. Anal. 2016, 7, 1–9. [Google Scholar]
- Mlaiki, N.; Yilmaz Özgür, N.; Mukheimer, A.; Taş, N. A new extension of the Mb-metric spaces. J. Math. Anal. 2018, 9, 118–133. [Google Scholar]
- Özgür, N.Y.; Mlaiki, N.; Tas, N.; Souayah, N. A new generalization of metric spaces: Rectangular M-metric spaces. Math. Sci. 2018, 12, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawashdeh, A.; Hassen, A.; Abdelbasset, F.; Sehmim, S.; Shatanawi, W. On common fixed points for α-F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 2011, 68. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W. Some fixed point results for a generalized Ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 2012, 45, 520–526. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Kamran, T.; Samreen, M.; Ain, Q.U.L. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric-type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double-Controlled metric-type spaces and some fixed point results. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 320. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.A. On quasi metric spaces. Am. J. Math. 1931, 53, 675–684. [Google Scholar] [CrossRef]
- Rieger, R.Z.; Zimmer, J. Young measure flow as a model for damage. Z. Angew. Math. Phys. 2009, 60, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Mielke, A.; Roubcek, T. A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 2003, 1, 571–597. [Google Scholar] [CrossRef]
- Mennucci, A. On asymmetric distances. Anal. Geom. Metr. Spaces 2014, 2, 115–153. [Google Scholar] [CrossRef]
- Woon, W.L.; Madnick, S. Asymmetric information distances for automated taxonomy construction. Knowl. Inf. Syst. 2009, 21, 91–111. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef] [Green Version]
- Chandok, S.; Manrao, S. Exitence of Fixed Points in Quasi Metric Spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Chandok, S. Existence of best proximity point in quasi partial metric space with an application. J. Anal. 2022, 30, 1–6. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chandok, S. The Generalized Hyperstability of General Linear Equation in Quasi-2-Banach Space. Acta Math. Sci. 2022, 42, 1357–1372. [Google Scholar] [CrossRef]
- Shoaib, A.; Kazi, S.; Tassaddiq, A.; Alshoraify, S.S.; Rasham, T. Double-Controlled Quasi-metric-type Spaces and Some Results. Complexity 2020, 2020, 3734126. [Google Scholar] [CrossRef]
- Matthews, S. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- O’Neill, S.J. Partial metrics, valuations and domain theory. Ann. N. Y. Acad. Sci. 1996, 806, 304–315. [Google Scholar] [CrossRef]
- Bukatin, M.A.; Scott, J.S. Towards computing distances between programs via Scott domains. In Logical Foundations of Computer Sicence, Lecture Notes in Computer Science; Adian, S., Nerode, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1234, pp. 33–43. [Google Scholar]
- Bukatin, M.A.; Shorina, S.Y. Partial metrics and co-continuous valuations. In Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science; Nivat, M., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1378, pp. 33–43. [Google Scholar]
- Escardo, M.H. PCF extended with real numbers. Theor. Comput. Sci. 1996, 162, 79–115. [Google Scholar] [CrossRef] [Green Version]
- Schellekens, M. A characterization of partial metrizability: Domains are quantifiable. Theoret. Comput. Sci. 2003, 305, 409–432. [Google Scholar] [CrossRef] [Green Version]
- Schellekens, M. The correpondence between partial metrics and semivaluations. Theoret. Comput. Sci. 2004, 315, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Waszkierwicz, P. Quantitative continuous domains. Appl. Categor. Struct. 2003, 11, 41–67. [Google Scholar] [CrossRef]
- Waszkierwicz, P. The local triangle axiom in topology and domain theory. Appl. Gen. Topol. 2003, 4, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M. Fixed point theorems for Meir-Keler mapping type in M-metric space with applications. Fixed Point Theory Appl. 2015, 2015, 210. [Google Scholar] [CrossRef] [Green Version]
- Monfared, H.; Asadi, M.; Azhini, M. Coupled fixed point theorems for generalized contractions in ordered M-metric spaces. Results Fixed Point Theory Appl. 2018, 2018, 2018004. [Google Scholar] [CrossRef]
- Monfared, H.; Azhini, M.; Asadi, M. Fixed point results on M-metric spaces. J. Math. Anal. 2016, 7, 85–101. [Google Scholar]
- Shukla, S. Partial b-Metric Spaces and Fixed Point Theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Sooppy Nisar, K.; Chalishajar, D.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal Fract. 2022, 6, 73. [Google Scholar] [CrossRef]
- Chandok, S.; Sharma, R.K.; Radenoviç, S. Multivalued problems via orthogonal contraction mappings with application to fractional differential equation. J. Fixed Point Theory Appl. 2021, 23, 14. [Google Scholar] [CrossRef]
- Chandok, S.; Paunoviç, L.; Radenoviç, S. Incomplete Metric With The Application For Integral Equations of Volterra Type. Math. Probl. Eng. 2022, 2022, 5959903. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chandok, S. Well-posedness and Ulam’s Stability of Functional Equations in F-metric space with an application. Filomat 2022, 36, 16. [Google Scholar] [CrossRef]
- Özgür, N.Y.; Taş, N. Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 1433–1449. [Google Scholar] [CrossRef] [Green Version]
- Özgür, N.; Taş, N. Geometric properties of fixed points and simulation functions. arXiv 2021, arXiv:2102.05417. [Google Scholar]
- Mlaiki, N.; Taş, N.; Haque, S.; Rizk, D. Some Fixed-Disc Results in Double-Controlled Quasi-metric-type Spaces. Fractal Fract. 2022, 6, 107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoob, I.; Chuan, N.Z.; Mlaiki, N. Double-Controlled Quasi M-Metric Spaces. Symmetry 2023, 15, 893. https://doi.org/10.3390/sym15040893
Ayoob I, Chuan NZ, Mlaiki N. Double-Controlled Quasi M-Metric Spaces. Symmetry. 2023; 15(4):893. https://doi.org/10.3390/sym15040893
Chicago/Turabian StyleAyoob, Irshad, Ng Zhen Chuan, and Nabil Mlaiki. 2023. "Double-Controlled Quasi M-Metric Spaces" Symmetry 15, no. 4: 893. https://doi.org/10.3390/sym15040893
APA StyleAyoob, I., Chuan, N. Z., & Mlaiki, N. (2023). Double-Controlled Quasi M-Metric Spaces. Symmetry, 15(4), 893. https://doi.org/10.3390/sym15040893