Fractional Stochastic Evolution Inclusions with Control on the Boundary
Abstract
:1. Introduction
- Nonlocal fractional stochastic differential inclusion with the Clarke subdifferential and control on the boundary is introduced.
- We establish a set of sufficient conditions that demonstrate the null boundary controllability for (1).
- An example is provided to show the effect of the results obtained.
2. Preliminaries
3. Main Result
4. Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, A.; Rabbani, M.; Mohiuddine, S.A.; Deuri, B.C. Iterative algorithm and theoretical treatment of existence of solution for (k, z)-Riemann–Liouville fractional integral equations. J. Pseudo-Differ. Oper. Appl. 2022, 13, 39. [Google Scholar] [CrossRef]
- Wang, J.R.; Ibrahim, A.G.; Fečkan, M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comput. 2015, 257, 103–118. [Google Scholar] [CrossRef]
- Henderson, J.; Ouahab, A. Impulsive differential inclusions with fractional order. Comput. Math. Appl. 2010, 59, 1191–1226. [Google Scholar] [CrossRef]
- Fischer, D.; Harbrecht, A.; Surmann, A.; McKenna, R. Electric vehicles’ impacts on residential electric local profiles—A stochastic modelling approach considering socio-economic, behavioural and spatial factors. Appl. Energy 2019, 233, 644–658. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Yang, J. Analysis of stochastic process to model safety risk in construction industry. J. Civ. Eng. Manag. 2021, 27, 87–99. [Google Scholar] [CrossRef]
- Omar, O.A.M.; Elbarkouky, R.A.; Ahmed, H.M. Fractional stochastic models for COVID-19: Case study of Egypt. Results Phys. 2021, 23, 104018. [Google Scholar] [CrossRef]
- Guido, G.; Haghshenas, S.S.; Haghshenas, S.S.; Vitale, A.; Astarita, V.; Haghshenas, A.S. Feasibility of Stochastic Models for Evaluation of Potential Factors for Safety: A Case Study in Southern Italy. Sustainability 2020, 12, 7541. [Google Scholar] [CrossRef]
- Li, J.; Lv, Z.; Liu, D.; Xu, Y. Stochastic vibration analysis of a nonlinear oscillator with symmetric viscoelastic impact protection under wide-band noise excitations. Meccanica 2022, 57, 1491–1503. [Google Scholar] [CrossRef]
- Gaeta, G. Symmetry of stochastic non-variational differential equations. Phys. Rep. 2017, 686, 1–62. [Google Scholar] [CrossRef]
- De Vecchi, F.C.D.; Morando, P.; Ugolini, S. Symmetries of stochastic differential equations: A geometric approach. J. Math. Phys. 2016, 57, 063504. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for fractional functional differential inclusions with infinite delay and applications to control theory. Fract. Calc. Appl. Anal. 2008, 11, 35–56. [Google Scholar]
- Ahmad, B.; Otero-Espinar, M.V. Existence of Solutions for Fractional Differential Inclusions with Antiperiodic Boundary Conditions. Bound. Value Probl. 2009, 2009, 1–11. [Google Scholar] [CrossRef]
- Donchev, T. Generic properties of multifunctions: Application to differential inclusions. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2585–2590. [Google Scholar] [CrossRef]
- Balasubramaniam, P. Existence of solutions of functional stochastic differential inclusions. Tamkang J. Math. 2002, 33, 25–34. [Google Scholar] [CrossRef]
- Michta, M. On connections between stochastic differential inclusions and set-valued stochastic differential equations driven by semimartingales. J. Differ. Equ. 2017, 262, 2106–2134. [Google Scholar] [CrossRef]
- Li, Y.; Liu, B. Existence of Solution of Nonlinear Neutral Stochastic Differential Inclusions with Infinite Delay. Stoch. Anal. Appl. 2007, 25, 397–415. [Google Scholar] [CrossRef]
- Sivasankar, S.; Udhayakumar, R. Hilfer Fractional Neutral Stochastic Volterra Integro-Differential Inclusions via Almost Sectorial Operators. Mathematics 2022, 10, 2074. [Google Scholar] [CrossRef]
- Ahmed, N.U. Existence of solutions of nonlinear stochastic differential inclusions on Banach space. In World Congress of Nonlinear Analysts; De Gruyter: Berlin, Germany, 2011; Volume 92, pp. 1699–1712. [Google Scholar]
- Guendouzi, T.; Benzatout, O. Existence of Mild Solutions for Impulsive Fractional Stochastic Differential Inclusions with State-Dependent Delay. Chin. J. Math. 2014, 2014, 981714. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H. Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay. Electron. J. Differ. Equ. 2013, 81, 2013. [Google Scholar]
- Boudaoui, A.; Caraballo, T.; Ouahab, A. Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay. Math. Methods Appl. Sci. 2015, 39, 1435–1451. [Google Scholar] [CrossRef]
- Jin, H.-Y.; Wang, Z.-A. Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 2016, 260, 162–196. [Google Scholar] [CrossRef]
- Wang, J.R.; Ahmed, H.M. Null controllability of nonlocal Hilfer fractional stochastic differential equations. Miskolc Math. Notes 2017, 18, 1073–1083. [Google Scholar]
- Ahmed, H.M.; El-Borai, M.M.; El-Sayed, W.; Elbadrawi, A. Null Controllability of Hilfer Fractional Stochastic Differential Inclusions. Fractal Fract. 2022, 6, 721. [Google Scholar] [CrossRef]
- Priyadharsini, J.; Balasubramaniam, P. Controllability of fractional noninstantaneous impulsive integrodifferential stochastic delay system. IMA J. Math. Control. Inf. 2021, 38, 654–683. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z.-A. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv. Nonlinear Anal. 2022, 12, 336–355. [Google Scholar] [CrossRef]
- Taghieh, A.; Zhang, C.; Alattas, K.A.; Bouteraa, Y.; Rathinasamy, S.; Mohammadzadeh, A. A predictive type-3 fuzzy control for underactuated surface vehicles. Ocean Eng. 2022, 266, 113014. [Google Scholar] [CrossRef]
- Jin, H.-Y.; Wang, Z.-A. Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model. Math. Methods Appl. Sci. 2014, 38, 444–457. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Y.-H. Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic sectorial operators. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 559–579. [Google Scholar] [CrossRef]
- Kumar, K.; Patel, R.; Vijayakumar, V.; Shukla, A.; Ravichandran, C. A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations. Math. Methods Appl. Sci. 2022, 45, 8193–8215. [Google Scholar] [CrossRef]
- Carreño, N.; Cerpa, E.; Mercado, A. Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations. Syst. Control. Lett. 2019, 133, 104542. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; Ramadan, M.E. Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps. Adv. Differ. Equ. 2019, 2019, 1–23. [Google Scholar] [CrossRef]
- Lizzy, R.M.; Balachandran, K. Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces. Int. J. Appl. Math. Comput. Sci. 2018, 28, 123–133. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Kumar, K.; Kumar, R.; Patel, R.; Shukla, A.; Vijayakumar, V. Discussion on boundary controllability of nonlocal fractional neutral integrodifferential evolution systems. AIMS Math. 2022, 7, 7642–7656. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Li, Y.X.; Lu, L. Existence and controllability for stochastic evolution inclusions of Clarke’s subdifferential type. Electron. J. Qual. Theory Differ. Equ. 2015, 59, 1–16. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.R.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2016. [Google Scholar]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Migórski, S.; Ochal, A. Quasi-Static Hemivariational Inequality via Vanishing Acceleration Approach. SIAM J. Math. Anal. 2009, 41, 1415–1435. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y. Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions. Acta Math. Sci. 2013, 33, 747–757. [Google Scholar] [CrossRef]
- Park, J.Y.; Balasubramaniam, P. Exact null controllabiliyt of abstract semilinear functional integrodifferential stochastic evolution equations in Hilbert space. Taiwan J. Math. 2009, 13, 2093–2103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.M.; El-Borai, M.M.; El-Sayed, W.G.; Elbadrawi, A.Y. Fractional Stochastic Evolution Inclusions with Control on the Boundary. Symmetry 2023, 15, 928. https://doi.org/10.3390/sym15040928
Ahmed HM, El-Borai MM, El-Sayed WG, Elbadrawi AY. Fractional Stochastic Evolution Inclusions with Control on the Boundary. Symmetry. 2023; 15(4):928. https://doi.org/10.3390/sym15040928
Chicago/Turabian StyleAhmed, Hamdy M., Mahmoud M. El-Borai, Wagdy G. El-Sayed, and Alaa Y. Elbadrawi. 2023. "Fractional Stochastic Evolution Inclusions with Control on the Boundary" Symmetry 15, no. 4: 928. https://doi.org/10.3390/sym15040928
APA StyleAhmed, H. M., El-Borai, M. M., El-Sayed, W. G., & Elbadrawi, A. Y. (2023). Fractional Stochastic Evolution Inclusions with Control on the Boundary. Symmetry, 15(4), 928. https://doi.org/10.3390/sym15040928