Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation
Abstract
:1. Introduction
2. On the Interpretation of Stochastic Calculus
2.1. Itô Integral
2.2. Stratonovich Integral
3. The Stochastic Solutions
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Triki, H.; Bensalem, C.; Biswas, A.; Khan, S.; Zhou, Q.; Adesanya, S.; Moshokoa, S.P.; Belic, M. Self-similar optical solitons with continuous-wave background in a quadratic–cubic non-centrosymmetric waveguide. Opt. Commun. 2019, 437, 392–398. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Sohaly, M.A. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case. Eur. Phys. J. Plus 2017, 132, 1–9. [Google Scholar] [CrossRef]
- Ullah, M.S.; Roshid, H.O.; Ali, M.Z.; Rahman, Z. Dynamical structures of multi-soliton solutions to the Bogoyavlenskii’s breaking soliton equations. Eur. Phys. J. Plus 2020, 135, 282. [Google Scholar] [CrossRef]
- Abdelwahed, H.G.; El-Shewy, E.K.; Abdelrahman, M.A.E.; Alsarhana, A.F. On the physical nonlinear (n + 1)-dimensional Schrödinger equation applications. Results Phys. 2021, 21, 103798. [Google Scholar] [CrossRef]
- Ullah, M.S.; Abdeljabbar, A.; Roshid, H.O.; Ali, M.Z. Application of the unified method to solve the Biswas–Arshed model. Results Phys. 2022, 42, 105946. [Google Scholar] [CrossRef]
- Nandi, D.C.; Ullah, M.S.; Roshid, H.O.; Ali, M.Z. Application of the unified method to solve the ion sound and Langmuir waves model. Heliyon 2022, 8, e10924. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010; Volume 168, p. 398. [Google Scholar]
- Vinogradov, A.M. What are symmetries of nonlinear PDEs and what are they themselves? arXiv 2013, arXiv:1308.5861. [Google Scholar]
- Hosseini, K.; Samadani, F.; Kumar, D.; Faridi, M. New optical solitons of cubic-quartic nonlinear Schödinger equation. Optik 2018, 157, 1101–1105. [Google Scholar] [CrossRef]
- Hosseini, K.; Hincal, E.; Baleanu, D.; Obi, O.A.; Salahshour, S. Non-singular multi-complexiton wave to a generalized KdV equation. Nonlinear Dyn. 2023, 111, 7591–7597. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A.; Alharbi, A. The new exact solutions for the deterministic and stochastic (2 + 1)-dimensional equations in natural sciences. J. Taibah Univ. Sci. 2019, 13, 834–843. [Google Scholar] [CrossRef]
- Alharbi, A. Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Math. 2023, 8, 1230–1250. [Google Scholar] [CrossRef]
- Younas, U.; Rezazadeh, H.; Ren, J.; Bilal, M. Propagation of diverse exact solitary wave solutions in separation phase of iron (Fe-Cr-X(X = Mo, Cu)) for the ternary alloys. Int. J. Mod. Phys. B 2022, 36, 2250039. [Google Scholar] [CrossRef]
- Rezazadeh, H. New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik 2018, 167, 218–227. [Google Scholar] [CrossRef]
- Alharbi, Y.F.; Abdelrahman, M.A.E.; Sohaly, M.A.; Inc, M. Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution. Eur. Phys. J. Plus 2020, 135, 1–14. [Google Scholar] [CrossRef]
- Mirzaee, F.; Rezaei, S.; Samadyar, N. Solving one-dimensional nonlinear stochastic sine-Gordon equation with a new meshfree technique. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2856. [Google Scholar] [CrossRef]
- Mirzaee, F.; Rezaei, S.; Samadyar, N. Numerical solution of two-dimensional stochastic time-fractional Sine–Gordon equation on non-rectangular domains using finite difference and meshfree methods. Eng. Anal. Bound. Elem. 2021, 127, 53–63. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Alkhidhr, H.A.; Amin, A.H.; El-Shewy, E.K. A new structure of solutions to the system of ISALWs via stochastic sense. Results Phys. 2022, 37, 105473. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Hassan, S.Z.; Alsaleh, D.M.; Alomair, R.A. The new structures of stochastic solutions for the nonlinear Schrödinger’s equations. J. Low Freq. Noise Vib. Act. Control 2022, 41, 1369–1379. [Google Scholar] [CrossRef]
- Karatzas, I.; Shreve, S.; Shreve, S.E. Brownian Motion and Stochastic Calculus; Springer Science+Business Media: Berlin/Heidelberg, Germany, 1991; Volume 113. [Google Scholar]
- Øksendal, B. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2003; pp. 65–84. [Google Scholar]
- Rakhshan, A.; Pishro-Nik, H. Introduction to simulation using MATLAB. In Introduction to Probability, Statistics, and Random Processes; Kappa Research, LLC: Boston, MA, USA, 2014; pp. 703–723. [Google Scholar]
- Meiss, J.D. Differential Dynamical Systems. In SIAM Monographs on Mathematical Modeling and Computation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007. [Google Scholar]
- Kluever, C.A. Dynamic Systems: Modeling, Simulation, and Control; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Triki, H.; Wazwaz, A.M. New solitons and periodic wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. 2016, 30, 788–794. [Google Scholar] [CrossRef]
- Hosseini, K.; Kaur, L.; Mirzazadeh, M.; Baskonus, H.M. 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative. Opt. Quantum Electron. 2021, 53, 125. [Google Scholar] [CrossRef]
- Hosseini, K.; Salahshour, S.; Mirzazadeh, M.; Ahmadian, A.; Baleanu, D.; Khoshrang, A. The (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation: Its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 2021, 136, 206. [Google Scholar] [CrossRef]
- Latha, M.M.; Vasanthi, C.C. An integrable model of (2 + 1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations. Phys. Scr. 2014, 89, 065204. [Google Scholar] [CrossRef]
- Alomair, R.A.; Hassan, S.Z.; Abdelrahman, M.A.E. A new structure of solutions to the coupled nonlinear Maccari’s systems in plasma physics. AIMS Math. 2022, 7, 8588–8606. [Google Scholar] [CrossRef]
- He, J.H. Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo machinery aerodynamics. Int. J. Turbo Jet-Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- He, J.H. Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 2004, 19, 847–851. [Google Scholar] [CrossRef]
- He, J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef]
- Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Higham, D.J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almulhem, M.; Hassan, S.Z.; Al-buainain, A.; Sohaly, M.A.; Abdelrahman, M.A.E. Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation. Symmetry 2023, 15, 927. https://doi.org/10.3390/sym15040927
Almulhem M, Hassan SZ, Al-buainain A, Sohaly MA, Abdelrahman MAE. Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation. Symmetry. 2023; 15(4):927. https://doi.org/10.3390/sym15040927
Chicago/Turabian StyleAlmulhem, Munerah, Samia Z. Hassan, Alanwood Al-buainain, Mohammed A. Sohaly, and Mahmoud A. E. Abdelrahman. 2023. "Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation" Symmetry 15, no. 4: 927. https://doi.org/10.3390/sym15040927
APA StyleAlmulhem, M., Hassan, S. Z., Al-buainain, A., Sohaly, M. A., & Abdelrahman, M. A. E. (2023). Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation. Symmetry, 15(4), 927. https://doi.org/10.3390/sym15040927