Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion
Abstract
:1. Introduction
2. Theoretical Model and Methods
3. Results
3.1. Jacobi-sn Function and Jacobi-cd Function Solutions
3.2. Jacobi-cn Function Solutions
3.3. Jacobi-dn Function Solutions
3.4. Jacobi-dc Function Solutions
3.5. Jacobi-nc Function Solutions
3.6. Jacobi-nd Function Solutions
3.7. Jacobi-sc and Jacobi-sd Function Solutions
3.8. Trigonometric Function Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Chen, Y. Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 2019, 98, 306–313. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Dong, H.H.; Chen, Y. Darboux-Backlund transformation and localized excitation on the periodic wave background for the nonlinear Schrödinger equation. Wave Motion 2021, 106, 102787. [Google Scholar] [CrossRef]
- Guan, X.; Liu, W.; Zhou, Q.; Biswas, A. Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 2019, 98, 1491–1500. [Google Scholar] [CrossRef]
- Yang, J.R.; Mao, J.J. Soliton solutions of coupled KdV system from Hirota’s bilinear direct method. Commun. Theor. Phys. 2008, 49, 22–26. [Google Scholar]
- Liu, X.; Liu, W.; Triki, H.; Zhou, Q.; Biswas, A. Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 2019, 96, 801–809. [Google Scholar] [CrossRef]
- Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [Google Scholar] [CrossRef]
- Zhu, F.B.; Zang, Q.P.; Ji, J.E. Exact solutions for a Wick-type stochastic 2D KdV equation. Appl. Math. Comput. 2010, 216, 2766–2770. [Google Scholar] [CrossRef]
- Liu, H.Z.; Xin, X.P.; Wang, Z.G.; Liu, X.Q. Backlund transformation classification, integrability and exact solutions to the generalized Burgers’-KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 11–18. [Google Scholar] [CrossRef]
- He, Y.H.; Zhao, Y.M.; Long, Y. New Exact Solutions for a Higher-Order Wave Equation of KdV Type Using Extended F-Expansion Method. Math. Probl. Eng. 2013, 2013, 128970. [Google Scholar] [CrossRef]
- Wang, H.C.; Liang, J.C.; Chen, G.H.; Zhou, L.; Ling, D.X.; Liu, M.X. Exact analytical solutions of higher-order nonlinear Schrodinger equation. Optik 2017, 131, 438–445. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M. On solitary wave solutions for the extended nonlinear Schrodinger equation via the modified F-expansion method. Opt. Quantum Electron. 2023, 55, 215. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, B.; Xu, T.; Li, L.L.; Lu, X.; Geng, T.; Zhu, H.W. Exact Solutions to a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvilli Equation via the Bilinear Method and Wronskian Technique. Commun. Theor. Phys. 2009, 52, 468–472. [Google Scholar]
- Wazwaz, A.M. Optical bright and dark soliton solutions for coupled nonlinear Schrodinger (CNLS) equations by the variational iteration method. Optik 2020, 207, 164457. [Google Scholar] [CrossRef]
- Dang, G. Meromorphic solutions of the seventh-order KdV equation by using an extended complex method and Painleve analysis. ScienceAsia 2023, 49, 108–115. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The simplified Hirota’s method for studying three extended higher-order KdV-type equations. J. Ocean Eng. Sci. 2016, 1, 181–185. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A new integrable nonlocal modified KdV equation: Abundant solutions with distinct physical structures. J. Ocean Eng. Sci. 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Liang, Z.F.; Tang, X.Y.; Ding, W. Infinitely many nonlocal symmetries and nonlocal conservation laws of the integrable modified KdV-sine-Gordon equation. Commun. Theor. Phys. 2021, 73, 055003. [Google Scholar] [CrossRef]
- Arefin, M.A.; Sadiya, U.; Inc, M.; Uddin, M.H. Adequate soliton solutions to the space–time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quant. Electron. 2022, 54, 309. [Google Scholar] [CrossRef]
- Ivancevic, V.G. Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model. Cogn. Comput. 2010, 2, 17–30. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S.; Baleanu, D. A novel analytical technique for the solution of time-fractional Ivancevic option pricing model. Phys. A 2020, 550, 124380. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, Y.H.; Manafian, J.; Rezazadeh, H.; Osman, M.S. Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model. Nonlinear Dyn. 2021, 105, 2539–2548. [Google Scholar] [CrossRef]
- Zeng, X.; Liang, C.; Yuan, C. Solitary Wave and Singular Wave Solutions for Ivancevic Option Pricing Model. Math. Probl. Eng. 2022, 2022, 4599194. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z. Exact Soliton Solutions and Quasi-Periodic Wave Solutions to The Forced Variable-Coefficient KdV Equation. Int. J. Mod. Phys. B 2012, 26, 1250072. [Google Scholar] [CrossRef]
- Zhang, S.; Cai, B. Multi-soliton solutions of a variable-coefficient KdV hierarchy. Nonlinear Dyn. 2014, 78, 1593–1600. [Google Scholar] [CrossRef]
- Triki, H.; Wazwaz, A.M. Traveling wave solutions for fifth-order KdV type equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 404–408. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Wael, S.; Seadawy, A.; Maowad, S.M.; EL-Kalaawy, O.H. Bifurcation; bilinear forms, conservation laws and soliton solutions of the temporal-second-order KdV equation. Int. J. Mod. Phys. B 2022, 36, 2250181. [Google Scholar] [CrossRef]
- Gurses, M.; Pekcan, A. Nonlocal KdV equations. Phys. Lett. A 2020, 384, 126894. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L. Bilinearization and new multi-soliton solutions of mKdV hierarchy with time-dependent coefficients. Open Phys. 2016, 14, 69–75. [Google Scholar]
- Zhang, Y.; Liu, J. Periodic and decay mode solutions of the generalized variable-coefficient Korteweg-de Vries equation. Mod. Phys. Lett. B 2019, 33, 1950234. [Google Scholar] [CrossRef]
- Zhang, S.; You, C. Inverse scattering transform for a supersymmetric Korteweg-de Vries equation. Therm. Sci. 2019, 23, S677–S684. [Google Scholar]
- Ismael, H.F.; Murad, M.A.S.; Bulut, H. Various exact wave solutions for KdV equation with time-variable coefficients. J. Ocean Eng. Sci. 2022, 7, 409–418. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Z.; Tian, C. The exact solutions to coupled KdV equations with variable coefficients by auxiliary equation method, Journal of Northwest University. Nat. Sci. Ed. 2020, 50, 955–959. [Google Scholar]
- Yao, S.W.; Zafar, A.; Urooj, A.; Tariq, B.; Shakeel, M.; Inc, M. Novel solutions to the coupled KdV equations and the coupled system of variant Boussinesq equations. Results Phys. 2023, 45, 106249. [Google Scholar] [CrossRef]
1 | , | |||
−1 | ||||
1 | , | |||
−1 | ||||
1 | ||||
1 | ||||
1 | ||||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Wu, X.; Liang, C.; Yuan, C.; Cai, J. Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion. Symmetry 2023, 15, 1021. https://doi.org/10.3390/sym15051021
Zeng X, Wu X, Liang C, Yuan C, Cai J. Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion. Symmetry. 2023; 15(5):1021. https://doi.org/10.3390/sym15051021
Chicago/Turabian StyleZeng, Xiaohua, Xiling Wu, Changzhou Liang, Chiping Yuan, and Jieping Cai. 2023. "Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion" Symmetry 15, no. 5: 1021. https://doi.org/10.3390/sym15051021
APA StyleZeng, X., Wu, X., Liang, C., Yuan, C., & Cai, J. (2023). Exact Solutions for Coupled Variable Coefficient KdV Equation via Quadratic Jacobi’s Elliptic Function Expansion. Symmetry, 15(5), 1021. https://doi.org/10.3390/sym15051021