Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity
Abstract
:1. Introduction
2. Preliminaries
3. Hermite–Hadamard Inequality Involving Generalized Preinvex Function Pertaining to Caputo–Fabrizio Operator
4. Refinements of Hermite–Hadamard-Type Inequalities Using Hölder and Power Mean Inequality
5. Refinements of Hermite–Hadamard-Type Inequalities Using Hölder Iscan and Improved Power Mean Inequality
6. Pachpatte-Type Inequality via -Polynomial Preinvex Function Pertaining to Caputo–Fabrizio Fractional Integral Operator
7. Applications to Means
- 1.
- The arithmetic mean
- 2.
- The generalized logarithmic mean
8. Conclusions
- (1)
- The authors presented some generalizations of the Hermite–Hadamard- and Pachpatte-type integral inequalities involving a generalized preinvex function in the sense of the Caputo–Fabrizio fractional operator.
- (2)
- Furthermore, a new Lemma is demonstrated and some results in the frame of fractional-order integrals are valid for the n-polynomial preinvex function.
- (3)
- To enhance the quality and reader’s interest, we explored the refinements of the Hermite–Hadamard inequality in order to lemma with the aid of Hölder and its improved version and the power mean and its improved version.
- (4)
- Some special cases are discussed.
- (5)
- Additionally, some applications of our discussed results are examined via special means.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Breaz, D.; Yildiz, C.; Cotirla, L.-I.; Rahman, G.; Yergöz, B. New Hadamard type inequalities for modified h-convex functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions. Adv. Diff. Equ. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Generalized convexity and integral inequalities. Appl. Math. Inf. Sci. 2015, 9, 233. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ.; Kadakal, H.; Bekar, K. On improvements of some integral inequalities. Researchgate 2019, 10, 13140. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Geometrically relative convex functions. Appl. Math. Inf. Sci. 2014, 8, 607. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. Higher order strongly generalized convex functions. Appl. Math. Inf. Sci. 2020, 14, 133–139. [Google Scholar]
- İşcan, İ. A new generalization of some integral inequalities for (α, m)-convex functions. Math. Sci. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Wu, S.; Awan, M.U.; Noor, M.A.; Noor, K.I.; Iftikhar, S. On a new class of convex functions and integral inequalities. J. Inequal. Appl. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Akdemir, A.O.; Dokuyucu, M.A. New Hadamard-type integral inequalities via a general form of fractional integral operators. Chaos Soliton Fractals 2021, 148, 111025. [Google Scholar] [CrossRef]
- Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoglan, A.; Abdeljawad, T. New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 110554. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Aşak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Agarwal, P. Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 2017, 40, 3882–3891. [Google Scholar] [CrossRef]
- Agarwal, P.; Jleli, M.; Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Choi, J.; Paris, R.B. Extended Riemann-Liouville fractional derivative operator and its applications. JNSA 2015, 8, 451–466. [Google Scholar] [CrossRef]
- Agarwal, P.; Mdallal, Q.A.; Cho, Y.J.; Jain, S. Fractional differential equations for the generalized Mittag-Leffler function. Adv. Diff. Equ. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1905, 30, 175–193. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New estimations of Hermite-Hadamard type integral inequalities for special functions. Fractal. Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Ahmad, H.; Sitthiwirattham, T.; Soontharanon, J. Several integral inequalities of Hermite-Hadamard type related to k-fractional conformable integral operators. Symmetry 2021, 13, 1880. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Aljoufi, L.S.; Awana, S.K. A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions. J. Math. Comp. 2022, 24, 300–348. [Google Scholar] [CrossRef]
- Toplu, T.; Kadakal, M.; İşcan, İ. On n-polynomial convexity and some relatd inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012, 247. [Google Scholar] [CrossRef]
- Antczak, T. On (p,r)-invex set and functions. J. Math. Anal. Appl. 2001, 263, 355–379. [Google Scholar] [CrossRef]
- Mishra, S.K.; Giorgi, G. Invexity and Optimization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
- Farajzadeh, A.; Noor, M.A.; Noor, K.I. Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Anal. 2009, 71, 3471–3476. [Google Scholar] [CrossRef]
- Noor, M.A. Variational-like inequalities. Optimization 1994, 30, 323–330. [Google Scholar] [CrossRef]
- Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Noor, M.A. Hadamard integral inequalities for product of two preinvex function. Nonlinear Anal. Forum. 2009, 14, 167–173. [Google Scholar]
- Du, T.S.; Liao, J.G.; Chen, L.Z.; Awan, M.U. Properties and Riemann—Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)—preinvex functions. J. Inequal. Appl. 2016, 2016, 306. [Google Scholar] [CrossRef]
- Latif, M.A.; Shoaib, M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions. J. Egyptian Math. Soc. 2015, 23, 236–241. [Google Scholar] [CrossRef]
- Deng, Y.; Kalsoom, H.; Wu, S. Some new Quantum Hermite–Hadamard-type estimates within a class of generalized (s,m)-preinvex functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef]
- Tariq, M.; Shaikh, A.A.; Sahoo, S.K.; Ahmad, H.; Sitthiwirattham, T.; Reunsumrit, J. New integral inequalities via generalized preinvex functions. Axioms 2021, 10, 296. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Kashuri, A.; Nofal, T.A.; Hsu, C.H. Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Math. 2021, 7, 15159–15181. [Google Scholar] [CrossRef]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 1–10. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Ahmadian, A.; Ahmad, M.N.; Mahmood, A.K. Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Math. 2021, 6, 1889–1904. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes. 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry 2021, 13, 8. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for diferentiable mappings and applications to special means fo real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kalsoom, H.; Idrees, M.; Baleanu, D.; Chu, Y.M. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function. J. Funct. Space. 2020, 2020, 3720798. [Google Scholar] [CrossRef]
- Kirmaci, U.S.; Özdemir, M.E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 153, 361–368. [Google Scholar] [CrossRef]
- Mehren, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications. J. Comp. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces. Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef]
- Özcan, S.; İşcan, İ. Some new Hermite-Hadamard type integral inequalities for the s-convex functions and theirs applications. J. Inequal. Appl. 2019, 201, 1–14. [Google Scholar]
- Dragomir, S.S.; Fitzpatrik, S. The Hadamard inequality for s-convex functions in the second sense. Demonstratio Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Rashid, S.; İşcan, İ.; Baleanu, D.; Chu, Y.M. Generation of new fractional inequalities via n-polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 264, 1–20. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Geo, W. Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications. Adv. Differ. Equ. 2020, 508, 1–25. [Google Scholar] [CrossRef]
- Du, T.T.; Liao, J.G.; Li, Y.G. Properties and integral inequalities of Hadamard–Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
- Wang, S.H.; Liu, X.M. Hermite-Hadamard type inequalities for operator s-preinvex functions. J. Nonlinear Sci. Appl. 2015, 8, 1070–1081. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Alp, N.; Bozkurt, H. On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions. Contemp. Anal. Appl. Math. 2013, 1, 237–252. [Google Scholar]
- Park, J. Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions. Inter. J. Pure. Appl. Math. 2012, 79, 623–640. [Google Scholar]
- Wu, S.; Baloch, I.A.; İşcan, İ. On harmonically (p,h,m)-preinvex functions. J. Function Spaces 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- İşcan, İ. New refinements for integral and sum forms of Holder inequality. J. Inequal. Appl. 2019, 304, 1–11. [Google Scholar] [CrossRef]
- Kadakal, M.; İscan, İ.; Kadakal, H. On improvements of some integral inequalities. Honam Math. J. 2021, 43, 441–452. [Google Scholar] [CrossRef]
- Lim, W.N. Some Pachpatte type inequalities on time scales. Comp. Math. Appl. 2009, 57, 275–282. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Khan, K.A.; Mabela, R.M.; Alsharif, A.M. Fejér-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel. Math. Prob. Eng. 2022, 2022, 7269033. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanta, S.; Sudsutad, W.; Kongson, J. Hermite-Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions. Fractal Fract. 2022, 6, 506. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Ntouyas, S.K.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K. Some Hermite-Hadamard and Hermite-Hadamard-Fejér type fractional inclusions pertaining to different kinds of generalized preinvexities. Symmetry 2022, 14, 1957. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, M.; Shaikh, A.A.; Ntouyas, S.K. Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity. Symmetry 2023, 15, 1033. https://doi.org/10.3390/sym15051033
Tariq M, Shaikh AA, Ntouyas SK. Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity. Symmetry. 2023; 15(5):1033. https://doi.org/10.3390/sym15051033
Chicago/Turabian StyleTariq, Muhammad, Asif Ali Shaikh, and Sotiris K. Ntouyas. 2023. "Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity" Symmetry 15, no. 5: 1033. https://doi.org/10.3390/sym15051033
APA StyleTariq, M., Shaikh, A. A., & Ntouyas, S. K. (2023). Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity. Symmetry, 15(5), 1033. https://doi.org/10.3390/sym15051033