Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry
Abstract
:1. Introduction
Governing Equations
2. Lie Symmetry Analysis
Symmetry Reduction
3. Improved Kudryashov Method
4. Generalized Arnous Method
5. Extended Tanh Technique
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayram, M. Optical bullets with Biswas–Milovic equation having Kerr and parabolic laws of nonlinearity. Optik 2022, 270, 170046. [Google Scholar] [CrossRef]
- Belyaeva, T.; Serkin, V. Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect. Eur. Phys. J. D 2012, 66, 1–9. [Google Scholar] [CrossRef]
- Biswas, A. Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 2020, 49, 580–583. [Google Scholar] [CrossRef]
- Gonzalez–Gaxiola, O.; Biswas, A.; Yildirim, Y.; Alshehri, H.M. Bright optical solitons with polynomial law of nonlinear refractive index by Adomian decomposition scheme. Proc. Est. Acad. Sci. 2022, 71, 213–220. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A.; Borodina, A.G.; Yıldırım, Y.; Alshehri, H.M. Painlevé analysis and optical solitons for a concatenated model. Optik 2023, 272, 170255. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Rational solutions of equations associated with the second Painlevé equation. Regul. Chaotic Dyn. 2020, 25, 273–280. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Safonova, D.V. Painlevé analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity. Optik 2021, 244, 167586. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Safonova, D.V.; Biswas, A. Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation. Regul. Chaotic Dyn. 2019, 24, 607–614. [Google Scholar] [CrossRef]
- Tang, L. Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fractals 2022, 161, 112383. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Wang, Y.; Wabnitz, S.; Akhmediev, N. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 2014, 89, 012907. [Google Scholar] [CrossRef] [PubMed]
- Triki, H.; Zhou, Q.; Biswas, A.; Liu, W.; Yıldırım, Y.; Alshehri, H.M.; Belic, M.R. Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. Phys. Lett. A 2021, 417, 127698. [Google Scholar] [CrossRef]
- Wang, M.Y. Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity. Results Phys. 2022, 33, 105077. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Mehanna, M. Higher-order Sasa–Satsuma equation: Bright and dark optical solitons. Optik 2021, 243, 167421. [Google Scholar] [CrossRef]
- Zayed, E.M.; Alngar, M.E.; Biswas, A.; Ekici, M.; Guggilla, P.; Khan, S.; Alshehri, H.M.; Belic, M.R. Optical solitons in fiber Bragg gratings with polynomial law nonlinearity and cubic–quartic dispersive reflectivity. Opt. Spectrosc. 2022, 130, 28–34. [Google Scholar] [CrossRef]
- Zhou, Q. Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 2022, 39, 010501. [Google Scholar] [CrossRef]
- Akter, A.; Islam, M.J.; Atai, J. Quiescent Gap Solitons in Coupled Nonuniform Bragg Gratings with Cubic-Quintic Nonlinearity. Appl. Sci. 2021, 11, 4833. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Stability of moving Bragg solitons in a semilinear coupled system with cubic–quintic nonlinearity. J. Mod. Opt. 2021, 68, 365–373. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Dynamics of colliding counterpropagating solitons in coupled Bragg gratings with cubic-quintic nonlinearity. J. Mod. Opt. 2019, 66, 1498–1505. [Google Scholar] [CrossRef]
- Ahmed, T.; Atai, J. Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating. Nonlinear Dyn. 2019, 97, 1515–1523. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Soliton–soliton interactions in a grating-assisted coupler with cubic-quintic nonlinearity. J. Mod. Opt. 2018, 65, 2153–2159. [Google Scholar] [CrossRef]
- Islam, M.J.; Atai, J. Stability of moving gap solitons in linearly coupled Bragg gratings with cubic–quintic nonlinearity. Nonlinear Dyn. 2018, 91, 2725–2733. [Google Scholar] [CrossRef]
- Ahmed, T.; Atai, J. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity. Phys. Rev. E 2017, 96, 032222. [Google Scholar] [CrossRef] [PubMed]
- Sultana, J.; Islam, M.S.; Atai, J.; Islam, M.R.; Abbott, D. Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 2017, 56, 076114. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, J.; Atai, J.; Abbott, D.; Rana, S.; Islam, M.R. Ultra low-loss hybrid core porous fiber for broadband applications. Appl. Opt. 2017, 56, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Jahirul Islam, M.; Atai, J. Stability of Bragg grating solitons in a semilinear dual-core system with cubic–quintic nonlinearity. Nonlinear Dyn. 2017, 87, 1693–1701. [Google Scholar] [CrossRef]
- Chowdhury, S.S.; Atai, J. Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. J. Mod. Opt. 2016, 63, 2238–2245. [Google Scholar] [CrossRef]
- Cao, H.; Atai, J.; Zuo, J.; Yu, Y.; Gbadebo, A.; Xiong, B.; Hou, J.; Liang, P.; Gao, Y.; Shu, X. Simultaneous multichannel carrier-suppressed return-to-zero to non-return-to-zero format conversion using a fiber Bragg grating. Appl. Opt. 2015, 54, 6344–6350. [Google Scholar] [CrossRef]
- Cao, H.; Shu, X.; Atai, J.; Zuo, J.; Xiong, B.; Shen, F.; Cheng, J. Fiber Bragg grating based notch filter for bit-rate-transparent NRZ to PRZ format conversion with two-degree-of-freedom optimization. J. Opt. 2015, 17, 025702. [Google Scholar] [CrossRef]
- Cao, H.; Shu, X.; Atai, J.; Gbadebo, A.; Xiong, B.; Fan, T.; Tang, H.; Yang, W.; Yu, Y. Optimally-designed single fiber Bragg grating filter scheme for RZ-OOK/DPSK/DQPSK to NRZ-OOK/DPSK/DQPSK format conversion. Opt. Express 2014, 22, 30442–30460. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Atai, J. Stability of gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity. Laser Phys. Lett. 2014, 12, 015401. [Google Scholar] [CrossRef]
- Cao, H.; Atai, J.; Yu, Y.; Xiong, B.; Zhou, Y.; Cai, J.; Shu, X. Carrier-suppressed return-to-zero to non-return-to-zero format conversion based on a single fiber Bragg grating with knife-shaped spectra. Appl. Opt. 2014, 53, 5649–5653. [Google Scholar] [CrossRef]
- Dasanayaka, S.; Atai, J. Moving Bragg grating solitons in a cubic–quintic nonlinear medium with dispersive reflectivity. Phys. Rev. E 2013, 88, 022921. [Google Scholar] [CrossRef]
- Cao, H.; Atai, J.; Shu, X.; Chen, G. Direct design of high channel-count fiber Bragg grating filters with low index modulation. Opt. Express 2012, 20, 12095–12110. [Google Scholar] [CrossRef]
- Baratali, B.; Atai, J. Gap solitons in dual-core Bragg gratings with dispersive reflectivity. J. Opt. 2012, 14, 065202. [Google Scholar] [CrossRef]
- Dasanayaka, S.; Atai, J. Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium. Phys. Rev. E 2011, 84, 026613. [Google Scholar] [CrossRef] [PubMed]
- Dasanayaka, S.; Atai, J. Stability of Bragg grating solitons in a cubic–quintic nonlinear medium with dispersive reflectivity. Phys. Lett. A 2010, 375, 225–229. [Google Scholar] [CrossRef]
- Carroll, S.S.; Atai, J. Collision dynamics of solitons in a multi-channel stabilized dispersion managed link. J. Opt. A: Pure Appl. Opt. 2009, 11, 085407. [Google Scholar] [CrossRef]
- Neill, D.R.; Atai, J. Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A 2007, 367, 73–82. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A.; Merhasin, I.M. Stability and collisions of gap solitons in a model of a hollow optical fiber. Opt. Commun. 2006, 265, 342–348. [Google Scholar] [CrossRef]
- Neill, D.R.; Atai, J. Collision dynamics of gap solitons in Kerr media. Phys. Lett. A 2006, 353, 416–421. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A. Gap solitons in Bragg gratings with dispersive reflectivity. Phys. Lett. A 2005, 342, 404–412. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A. Stability and interactions of solitons in asymmetric dual-core optical waveguides. Opt. Commun. 2003, 221, 55–62. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A. Spatial solitons in a medium composed of self-focusing and self-defocusing layers. Phys. Lett. A 2002, 298, 140–148. [Google Scholar] [CrossRef]
- Nistazakis, H.; Frantzeskakis, D.; Atai, J.; Malomed, B.; Efremidis, N.; Hizanidis, K. Multichannel pulse dynamics in a stabilized Ginzburg-Landau system. Phys. Rev. E 2002, 65, 036605. [Google Scholar] [CrossRef] [PubMed]
- Atai, J.; Malomed, B.A. Solitary waves in systems with separated Bragg grating and nonlinearity. Phys. Rev. E 2001, 64, 066617. [Google Scholar] [CrossRef]
- Atai, J.; Malomed, B.A. Families of Bragg-grating solitons in a cubic–quintic medium. Phys. Lett. A 2001, 284, 247–252. [Google Scholar] [CrossRef]
- Arnous, A.H.; Zhou, Q.; Biswas, A.; Guggilla, P.; Khan, S.; Yıldırım, Y.; Alshomrani, A.S.; Alshehri, H.M. Optical solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 2022, 422, 127797. [Google Scholar] [CrossRef]
- Tanwar, D.V.; Kumar, M.; Tiwari, A.K. Lie symmetries, invariant solutions and phenomena dynamics of Boiti–Leon–Pempinelli system. Phys. Scr. 2022, 97, 075209. [Google Scholar] [CrossRef]
- Tanwar, D.V. Lie symmetry reductions and generalized exact solutions of Date–Jimbo–Kashiwara–Miwa equation. Chaos Solitons Fractals 2022, 162, 112414. [Google Scholar] [CrossRef]
- Tanwar, D.V.; Kumar, M. On Lie symmetries and invariant solutions of Broer–Kaup–Kupershmidt equation in shallow water of uniform depth. J. Ocean. Eng. Sci. 2022, in press. [CrossRef]
- Tanwar, D.V. Optimal system, symmetry reductions and group-invariant solutions of (2+ 1)-dimensional ZK-BBM equation. Phys. Scr. 2021, 96, 065215. [Google Scholar] [CrossRef]
- Tanwar, D.V.; Wazwaz, A.M. Lie symmetries and exact solutions of KdV–Burgers equation with dissipation in dusty plasma. Qual. Theory Dyn. Syst. 2022, 21, 164. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010; Volume 168. [Google Scholar]
- Arrigo, D.J. Symmetry Analysis of Differential Equations: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Number 22; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bluman, G.; Anco, S. Symmetry and Integration Methods for Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 154. [Google Scholar]
- Habiba, U.; Salam, M.A.; Hossain, M.B.; Datta, M. Solitary wave solutions of Chafee-Infante equation and (2 + 1)-dimensional breaking soliton equation by the improved Kudryashov method. Glob. J. Sci. Front. Res. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Malik, S.; Kumar, S. Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach. Optik 2022, 258, 168865. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 2007, 184, 1002–1014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Kumar, S.; Biswas, A.; Yıldırım, Y.; Moraru, L.; Moldovanu, S.; Iticescu, C.; Moshokoa, S.P.; Bibicu, D.; Alotaibi, A. Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry. Symmetry 2023, 15, 963. https://doi.org/10.3390/sym15050963
Malik S, Kumar S, Biswas A, Yıldırım Y, Moraru L, Moldovanu S, Iticescu C, Moshokoa SP, Bibicu D, Alotaibi A. Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry. Symmetry. 2023; 15(5):963. https://doi.org/10.3390/sym15050963
Chicago/Turabian StyleMalik, Sandeep, Sachin Kumar, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Catalina Iticescu, Seithuti P. Moshokoa, Dorin Bibicu, and Abdulaziz Alotaibi. 2023. "Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry" Symmetry 15, no. 5: 963. https://doi.org/10.3390/sym15050963
APA StyleMalik, S., Kumar, S., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Iticescu, C., Moshokoa, S. P., Bibicu, D., & Alotaibi, A. (2023). Gap Solitons in Fiber Bragg Gratings Having Polynomial Law of Nonlinear Refractive Index and Cubic–Quartic Dispersive Reflectivity by Lie Symmetry. Symmetry, 15(5), 963. https://doi.org/10.3390/sym15050963