Surfaces with Constant Negative Curvature
Abstract
:1. Introduction
2. Preliminaries
3. Curvatures of SCNC in
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bianchi, L. Lezioni di Geometria Differenziale; Ecole Bibliotheque: Pisa, Italy, 1902. [Google Scholar]
- Darboux, G. Lecons sur la Theorie Generate des Surfaces et les Applications Geometriques du Calcul Infinitesimal; Gauthier-Villars: Paris, France, 1887–1896; pp. 1–4. [Google Scholar]
- Pinkall, U. Designing Cylinders with Constant Negative Curvature. In Discrete Differential Geometry. Oberwolfach Seminars; Birkhäuser: Basel, Switzerland, 2008; Volume 38. [Google Scholar]
- Bobenko, A.; Pinkall, U.J. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. Differ. Geom. 1996, 43, 527–611. [Google Scholar] [CrossRef]
- Melko, M.; Sterling, I. Application of soliton theory to the construction of pseudospherical surfaces in R3. Ann. Glob. Anal. Geom. 1993, 11, 65–107. [Google Scholar] [CrossRef]
- Cieslinski, J.L. Pseudospherical surfaces on time scales: A geometric definition and the spectral approach. J. Phys. A Math. Theor. 2007, 40, 12525–12538. [Google Scholar] [CrossRef]
- Aldossary, M.T. Bäcklund’s Theorem for Spacelike Surfaces in Minkowski 3-Space. OSR J. Math. 2013, 5, 24–30. [Google Scholar]
- Tian, C. Bäcklund transformations for surfaces with K = −1 in 2,1. J. Geom. Phys. 1997, 22, 212–218. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. On Bäcklund Transformation Between Timelike Curves in Minkowski Space-Time. SDU J. Nat. Appl. Sci. 2018, 22, 1143–1150. [Google Scholar]
- Kim, Y.H.; Yoon, D.W. Classification of ruled surfaces in Minkowski 3-spaces. J. Geom. Phys. 2004, 49, 89–100. [Google Scholar] [CrossRef]
- López, R. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space. Int. Electron. J. Geom. 2014, 7, 44–107. [Google Scholar] [CrossRef]
- Strubeckerr, K. Theorie der flachentreuen Abbildungen der Ebene, Contributions to Geometry. In Proceedings of the Geometry-Symposium, Siegen, Germany, 28 June–1 July 1978. [Google Scholar]
- Strubeckerr, K. Die Flächen konstanter Relativkrümmung K = rt − s2. Differentialgeometrie des isotropen Raumes II. Math. Z. 1942, 47, 743–777. [Google Scholar] [CrossRef]
- Strubecker, K. Die Flächen, deren Asymptotenlinien ein Quasi-Rückungsnetz bilden. Sitzungsberichte 1952, 12, 103–110. [Google Scholar]
- Decu, S.; Verstraelen, L. A note on the isotropical Geometry of production surfaces. Kragujev. J. Math. 2013, 37, 217–220. [Google Scholar]
- Brubaker, N.D.; Camero, J.; Rocha, O.R.; Suceava, B.D. A ladder of curvatures in the geometry of surfaces. Int. Electron. J. Geom. 2018, 11, 28–33. [Google Scholar]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Koenderink, J.J. Shadows of Shapes; De Clootcrans Press: Utrecht, The Netherlands, 2012. [Google Scholar]
- Verstraelen, L. Geometry of submanifolds I. The first Casorati curvature indicatrices. Kragujev. J. Math. 2013, 37, 5–23. [Google Scholar]
- Conley, C.; Etnyre, R.; Gardener, B.; Odom, L.H.; Suceava, B.D. New Curvature Inequalities for Hypersurfaces in the Euclidean Ambient Space. Taiwan. J. Math. 2013, 17, 885–895. Available online: http://www.jstor.org/stable/taiwjmath.17.3.885 (accessed on 12 April 2023). [CrossRef]
- Weingarten, J. Uber eine Klasse aufeinander abwickelbarer Flachen. J. F’Ur Die Reine Angew. Math. 1861, 59, 382–393. [Google Scholar]
- Weingarten, J. Uber die Flachen, derer Normalen eine gegebene Flache beruhren. J. Fur Die Reine Angew. Math. 1863, 62, 61–63. [Google Scholar]
- Hartman, P.; Wintner, A. Umbilical points and W-surfaces. Am. J. Math. 1954, 76, 502–508. [Google Scholar] [CrossRef]
- Chern, S.S. On special W-surfaces. Proc. Am. Math. Soc. 1955, 6, 783–786. [Google Scholar] [CrossRef]
- Chen, B.Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Singapore, 2011. [Google Scholar]
- Šipuš, Ž.M. Translation surfaces of constant curvatures in a simply isotropic space. Period Math. Hung. 2014, 68, 160–175. [Google Scholar] [CrossRef]
- Sangwine, S.J. Perspectives on Color Image Processing by Linear Vector Methods Using Projective Geometric Transformations. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 175, pp. 283–307. [Google Scholar] [CrossRef]
- Onishchik, A.L.; Sulanke, R. Projective and Cayley-Klein Geometries; Springer: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- Pottmann, H.; Grohs, P.; Mitra, N.J. Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 2009, 31, 391–419. [Google Scholar] [CrossRef]
- Pottmann, H.; Liu, Y. Discrete Surfaces in Isotropic Geometry. Mathematics of Surfaces XII; Springer: Berlin, Germany, 2007; pp. 341–363. [Google Scholar]
- Yoon, D.W.; Lee, J.W. Linear Weingarten Helicoidal Surfaces in Isotropic Space. Symmetry 2016, 8, 126. [Google Scholar] [CrossRef]
- Lone, M.S.; Karacan, M.K. Dual Translation Surfaces in the Three Dimensional Simply Isotropic Space. Tamkang J. Math. 2018, 49, 67–77. [Google Scholar] [CrossRef]
- Güler, E.; Vanli, A.T. On The Mean, Gauss, The Second Gaussian and The Second Mean Curvature of The Helicoidal Surfaces with Light-Like Axis in . Tsukuba J. Math. 2008, 32, 49–65. [Google Scholar] [CrossRef]
- Sauer, V.R. Infinitesimale Verbiegung der Flächen, deren Asymptotenlinien ein Quasi-Rückungsnetz bilden. Sitz. Ber. Math. Naturw. Kl. Bayr. Akad. Wiss. 1950, 1, 1–12. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurkan, S.K.; Gürgil, İ. Surfaces with Constant Negative Curvature. Symmetry 2023, 15, 997. https://doi.org/10.3390/sym15050997
Nurkan SK, Gürgil İ. Surfaces with Constant Negative Curvature. Symmetry. 2023; 15(5):997. https://doi.org/10.3390/sym15050997
Chicago/Turabian StyleNurkan, Semra Kaya, and İbrahim Gürgil. 2023. "Surfaces with Constant Negative Curvature" Symmetry 15, no. 5: 997. https://doi.org/10.3390/sym15050997
APA StyleNurkan, S. K., & Gürgil, İ. (2023). Surfaces with Constant Negative Curvature. Symmetry, 15(5), 997. https://doi.org/10.3390/sym15050997