Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Logical Management of Mobile Networks
2.2. Software Platforms
2.3. Network Monitoring
2.4. Importance of the Proposed Approach
3. System Architecture and Methodology
3.1. Platform Architecture
- Cross-platform desktop client subsystem. This is used to gather data and to define, monitor and manage the network. It has its own internal capabilities to retrieve CPU, memory or network status parameters. It is designed to also allow for the call to external commands and tools, and afterwards, the collected data are sent to the server application to be processed and saved.
- Cross-platform server application. This is used to collect the data. The data can be processed, and a comparison between snapshots can be made and related alerts generated. Furthermore, the data are stored in the database for further data processing, or in order to create an overview over the whole monitored network.
- The custom communication protocol is used in order to implement the client–server link. Thus, a structure was designed for the data packets, so that further functionalities or additional data gathering and reporting components can be added to the platform. The exchanged data are packed at the source and unpacked at the destination. Various types of user-defined packets are exchanged over the networks using the TCP headers, allowing the user-defined packets to be encapsulated in transport-layer security packets. These include authentication and authorisation packages, request submission packages, snapshot submission packages, etc.
- The database is used to store data and to prevent big data scalability problems using the entity relationship model.
- The web application subsystem is independent, and it is used to monitor and manage the network nodes visually. Moreover, a Spring Boot web interface was also implemented.
3.2. Client Subsystem
3.2.1. Data Gathering
- Gather data set 1, using one or more of the above-described methods;
- Wait for an amount of time t;
- Gather data set 2, using one or more of the above-described methods;
- Compute usage.
3.2.2. Sending Data
- Create a snapshot of the system;
- The snapshot is serialised;
- Serialisation is saved locally in a file;
- Serialisation is sent to the server using the custom protocol.
3.2.3. Authentication and Authorisation
3.3. Server Application
3.3.1. Communication with the Client Applications
3.3.2. Database
- System information—to store general information regarding a system;
- Authorisation—to store information regarding how authorisation is handled;
- Snapshots—to store information regarding the status of a system at a particular time.
- Users of a machine or service and their logged in times;
- CPU usage of the respective compute node;
- Environment variables;
- Availability of a node or service;
- Users’ roles, etc.
3.4. Communication Protocol
- Read the n characters from the TCP stream to obtain the message size;
- Try to read from the TCP stream until the received data are of size n.
3.5. Web Application
3.5.1. RESTful Services
3.5.2. Real-Time Monitoring of a Network Node
3.5.3. Data Access
4. Experimental Assessment and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
CNC | Computer Numerical Control |
CPU | Central Processing Unit |
C-RAN | Cloud Radio Access Network |
DNM | Distributed Network Monitoring |
eCAL | enhanced Communication Abstraction Layer |
FPGA | Field-Programmable Gate Array |
GPU | Graphics Processing Unit |
HPC | High-performance computing |
HTTPS | Hypertext Transfer Protocol Secure |
IDS | Intrusion Detection System |
IoT | Internet of Things |
IPS | Intrusion Prevention System |
ITS | Intelligent Transportation System |
MQTT | Message Queue Telemetry Transport |
NFV | Network Functions Virtualisation |
NIST | National Institute of Standards and Technology |
NTMA | Network Traffic Monitoring and Analysis |
OPC | Open Platform Communications |
OPC UA | OPC Unified Architecture |
SLO | Service Level Objectives |
SNMP | Simple Network Management Protocol |
SVM | Support Vector Machine |
QUIC | Quick UDP Internet Connections |
RAM | Random Access Memory |
RDP | Remote Desktop Protocol |
TCP | Transmission Control Protocol |
TLS | Transport Layer Security |
UAV | Unmanned Aerial Vehicles |
UDP | User Datagram Protocol |
UPF | User Plane Function |
VM | Virtual Machine |
WSN | Wireless Sensor Networks |
References
- Common Vulnerabilities and Exposures (CVE). Available online: https://cve.mitre.org (accessed on 18 January 2023).
- Common Weakness Enumeration (CWE). Available online: https://cwe.mitre.org (accessed on 18 January 2023).
- Yadav, T.; Rao, A.M. Technical aspects of cyber kill chain. In Proceedings of the International Symposium on Security in Computing and Communication, Kochi, India, 10–13 August 2015; pp. 438–452. [Google Scholar] [CrossRef]
- Fenz, S.; Heurix, J.; Neubauer, T.; Pechstein, F. Current challenges in information security risk management. Inf. Manag. Comput. Secur. 2014, 22, 410–430. [Google Scholar] [CrossRef]
- Mehnen, J.; He, H.; Tedeschi, S.; Tapoglou, N. Practical Security Aspects of the Internet of Things. In Cybersecurity for Industry 4.0; Springer International Publishing: Cham, Switzerland, 2017; pp. 225–242. [Google Scholar] [CrossRef]
- Manogaran, G.; Thota, C.; Lopez, D.; Sundarasekar, R. Big Data Security Intelligence for Healthcare Industry 4.0. In Cybersecurity for Industry 4.0; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–126. [Google Scholar] [CrossRef]
- Wu, Q.; Ferebee, D.; Lin, Y.; Dasgupta, D. An integrated cyber security monitoring system using correlation-based techniques. In Proceedings of the 2009 IEEE International Conference on System of Systems Engineering (SoSE), Albuquerque, NM, USA, 30 May–3 June 2009; pp. 1–6. [Google Scholar]
- Lee, S.; Levanti, K.; Kim, H.S. Network monitoring: Present and future. Comput. Netw. 2014, 65, 84–98. [Google Scholar] [CrossRef]
- Montes, J.; Sánchez, A.; Memishi, B.; Pérez, M.S.; Antoniu, G. GMonE: A complete approach to cloud monitoring. Future Gener. Comput. Syst. 2013, 29, 2026–2040. [Google Scholar] [CrossRef]
- Aceto, G.; Botta, A.; de Donato, W.; Pescapè, A. Cloud monitoring: A survey. Comput. Netw. 2013, 57, 2093–2115. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, S.R.; Yeh, E.H.; Lin, P.; Jeng, J.Y. A Kubernetes-Based Monitoring Platform for Dynamic Cloud Resource Provisioning. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kshirsagar, D.; Patil, A. Blackhole attack detection and prevention by real time monitoring. In Proceedings of the 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Carlucci, G.; Cicco, L.D.; Mascolo, S. HTTP over UDP: An Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015; pp. 609–614. [Google Scholar] [CrossRef]
- Yan, L.; Cao, S.; Gong, Y.; Han, H.; Wei, J.; Zhao, Y.; Yang, S. SatEC: A 5G Satellite Edge Computing Framework Based on Microservice Architecture. Sensors 2019, 19, 831. [Google Scholar] [CrossRef]
- de Jesus Martins, R.; Dalla-Costa, A.G.; Wickboldt, J.A.; Granville, L.Z. SWEETEN: Automated Network Management Provisioning for 5G Microservices-Based Virtual Network Functions. In Proceedings of the 2020 16th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 2–6 November 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Hossain, M.F.; Mahin, A.U.; Debnath, T.; Mosharrof, F.B.; Islam, K.Z. Recent research in cloud radio access network (C-RAN) for 5G cellular systems—A survey. J. Netw. Comput. Appl. 2019, 139, 31–48. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Chang, Y.W.; Chen, C.; Chen, J.C. Design and implementation of a generic 5G user plane function development framework. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New Orleans, LA, USA, 25–29 October 2021; pp. 846–848. [Google Scholar] [CrossRef]
- Xinjian, O.; Jingjing, L.; Chaofeng, C.; Zilin, Y.; Xiang, L.; Shukai, H. Research on 5G Microservices Capability Open Architecture and Deterministic Bearing Technology. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 492–496. [Google Scholar] [CrossRef]
- Aftab, M.A.; Hussain, S.S.; Ali, I.; Ustun, T.S. IEC 61850 based substation automation system: A survey. Int. J. Electr. Power Energy Syst. 2020, 120, 106008. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Wang, P.; Lin, S.C. SoftAir: A software defined networking architecture for 5G wireless systems. Comput. Netw. 2015, 85, 1–18. [Google Scholar] [CrossRef]
- Xia, X.; Xu, K.; Wang, Y.; Xu, Y. A 5G-Enabling Technology: Benefits, Feasibility, and Limitations of In-Band Full-Duplex mMIMO. IEEE Veh. Technol. Mag. 2018, 13, 81–90. [Google Scholar] [CrossRef]
- Khalfi, B.; Hamdaoui, B.; Guizani, M. Extracting and Exploiting Inherent Sparsity for Efficient IoT Support in 5G: Challenges and Potential Solutions. IEEE Wirel. Commun. 2017, 24, 68–73. [Google Scholar] [CrossRef]
- Xu, L.; Collier, R.; O’Hare, G.M.P. A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios. IEEE Internet Things J. 2017, 4, 1229–1249. [Google Scholar] [CrossRef]
- Spyridis, Y.; Lagkas, T.; Sarigiannidis, P.; Argyriou, V.; Sarigiannidis, A.; Eleftherakis, G.; Zhang, J. Towards 6G IoT: Tracing Mobile Sensor Nodes with Deep Learning Clustering in UAV Networks. Sensors 2021, 21, 3936. [Google Scholar] [CrossRef] [PubMed]
- Gholami, A.; Rao, K.; Hsiung, W.P.; Po, O.; Sankaradas, M.; Chakradhar, S. ROMA: Resource Orchestration for Microservices-based 5G Applications. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Guija, D.; Siddiqui, M.S. Identity and Access Control for micro-services based 5G NFV platforms. In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Soenen, T.; Rossem, S.V.; Tavernier, W.; Vicens, F.; Valocchi, D.; Trakadas, P.; Karkazis, P.; Xilouris, G.; Eardley, P.; Kolometsos, S.; et al. Insights from SONATA: Implementing and integrating a microservice-based NFV service platform with a DevOps methodology. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Orduz, J.S.; Orozco, G.D.; Tobar-Arteaga, C.H.; Rendon, O.M.C. μvIMS: A Finer-Scalable Architecture Based on Microservices. In Proceedings of the 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Osnabrueck, Germany, 14–17 October 2019; pp. 141–148. [Google Scholar] [CrossRef]
- Lee, G.M.; Um, T.W.; Choi, J.K. AI AS A MICROSERVICE (AIMS) OVER 5G NETWORKS. In Proceedings of the 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), Santa Fe, Argentina, 26–28 November 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Prabadevi, B.; Deepa, N.; Pham, Q.V.; Nguyen, D.C.; Reddy, T.; Pathirana, P.N.; Dobre, O. Toward Blockchain for Edge-of-Things: A New Paradigm, Opportunities, and Future Directions. IEEE Internet Things Mag. 2021, 4, 102–108. [Google Scholar] [CrossRef]
- Gayialis, S.P.; Kechagias, E.; Papadopoulos, G.A.; Konstantakopoulos, G.D. Design of a Blockchain-Driven System for Product Counterfeiting Restraint in the Supply Chain. In IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2019; pp. 474–481. [Google Scholar] [CrossRef]
- Salhab, N.; Rahim, R.; Langar, R. NFV Orchestration Platform for 5G over On-the-fly Provisioned Infrastructure. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 971–972. [Google Scholar] [CrossRef]
- Costache, C.; Machidon, O.; Mladin, A.; Sandu, F.; Bocu, R. Software-defined networking of Linux containers. In Proceedings of the 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th Conference, Chisinau, Moldova, 11–13 September 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Mijumbi, R.; Serrat, J.; Luis Gorricho, J.; Latre, S.; Charalambides, M.; Lopez, D. Management and orchestration challenges in network functions virtualization. IEEE Commun. Mag. 2016, 54, 98–105. [Google Scholar] [CrossRef]
- Rao, K.; Coviello, G.; Hsiung, W.P.; Chakradhar, S. ECO: Edge-Cloud Optimization of 5G applications. In Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia, 10–13 May 2021; pp. 649–659. [Google Scholar] [CrossRef]
- Nadaf, S.M.; Behera, S.; Rath, H.K.; Mishra, G.; Mukhopadhyay, R.; Patro, S. Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks. Int. J. Comput. Syst. Eng. 2022, 16, 89–97. [Google Scholar]
- Alencar, D.; Both, C.; Antunes, R.; Oliveira, H.; Cerqueira, E.; Rosario, D. Dynamic Microservice Allocation for Virtual Reality Distribution With QoE Support. IEEE Trans. Netw. Serv. Manag. 2022, 19, 729–740. [Google Scholar] [CrossRef]
- Luo, G.; Yuan, Q.; Li, J.; Wang, S.; Yang, F. Artificial Intelligence Powered Mobile Networks: From Cognition to Decision. IEEE Netw. 2022, 36, 136–144. [Google Scholar] [CrossRef]
- Kaur, K.; Guillemin, F.; Rodriguez, V.Q.; Sailhan, F. Latency and network aware placement for cloud-native 5G/6G services. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 114–119. [Google Scholar] [CrossRef]
- Yan, M.; Liang, X.; Lu, Z.; Wu, J.; Zhang, W. HANSEL: Adaptive horizontal scaling of microservices using Bi-LSTM. Appl. Soft Comput. 2021, 105, 107216. [Google Scholar] [CrossRef]
- Hannousse, A.; Yahiouche, S. Securing microservices and microservice architectures: A systematic mapping study. Comput. Sci. Rev. 2021, 41, 100415. [Google Scholar] [CrossRef]
- Huang, Z.; Friderikos, V.; Dohler, M.; Aghvami, H. Granular VNF-Based Microservices. In Design Innovation and Network Architecture for the Future Internet; IGI Global: Hershey, PA, USA, 2021; pp. 250–271. [Google Scholar] [CrossRef]
- Sheoran, A.; Fahmy, S.; Cao, L.; Sharma, P. AI-Driven Provisioning in the 5G Core. IEEE Internet Comput. 2021, 25, 18–25. [Google Scholar] [CrossRef]
- Mateo-Fornés, J.; Pagès-Bernaus, A.; Plà-Aragonés, L.M.; Castells-Gasia, J.P.; Babot-Gaspa, D. An Internet of Things Platform Based on Microservices and Cloud Paradigms for Livestock. Sensors 2021, 21, 5949. [Google Scholar] [CrossRef] [PubMed]
- Ying, F.; Zhao, S.; Deng, H. Microservice Security Framework for IoT by Mimic Defense Mechanism. Sensors 2022, 22, 2418. [Google Scholar] [CrossRef] [PubMed]
- Bocu, R.; Costache, C. A homomorphic encryption-based system for securely managing personal health metrics data. IBM J. Res. Dev. 2018, 62, 1:1–1:10. [Google Scholar] [CrossRef]
- Pruna, S.; Vasilescu, A. FitPi: Wearable IoT solution for a daily smart life. Int. J. Adv. Stat. IT&C Econ. Life Sci. 2020, 10, 67–79. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Kim, M.J.; Jung, W.; Kim, J.; Rhu, M.; Ahn, J.H. Bts: An accelerator for bootstrappable fully homomorphic encryption. In Proceedings of the 49th Annual International Symposium on Computer Architecture, New York, NY, USA, 18–22 June 2022; pp. 711–725. [Google Scholar] [CrossRef]
- Stanimirović, A.; Bogdanović, M.; Frtunić, M.; Stoimenov, L. Low-voltage electricity network monitoring system: Design and production experience. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720903629. [Google Scholar] [CrossRef]
- Colace, F.; Khan, M.; Lombardi, M.; Santaniello, D. A multigraph approach for supporting computer network monitoring systems. In Proceedings of the Fifth International Congress on Information and Communication Technology, London, UK, 20–21 February 2020; pp. 470–477. [Google Scholar]
- Hohemberger, R.; Lorenzon, A.F.; Rossi, F.; Luizelli, M.C. Optimizing Distributed Network Monitoring for NFV Service Chains. IEEE Commun. Lett. 2019, 23, 1332–1336. [Google Scholar] [CrossRef]
- Shen, S.H. An Efficient Network Monitor for SDN Networks. ACM SIGMETRICS Perform. Eval. Rev. 2019, 46, 95–96. [Google Scholar] [CrossRef]
- Abbasi, M.; Shahraki, A.; Taherkordi, A. Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey. Comput. Commun. 2021, 170, 19–41. [Google Scholar] [CrossRef]
- Li, X.; Zhao, N.; Jin, R.; Liu, S.; Sun, X.; Wen, X.; Wu, D.; Zhou, Y.; Guo, J.; Chen, S.; et al. Internet of Things to network smart devices for ecosystem monitoring. Sci. Bull. 2019, 64, 1234–1245. [Google Scholar] [CrossRef]
- Clot, B.; Gilge, S.; Hajkova, L.; Magyar, D.; Scheifinger, H.; Sofiev, M.; Bütler, F.; Tummon, F. The EUMETNET AutoPollen programme: Establishing a prototype automatic pollen monitoring network in Europe. Aerobiologia 2020, 1–9. [Google Scholar] [CrossRef]
- Mahajan, S.R.H.; Kotecha, K. Prediction of Network Traffic in Wireless Mesh Networks Using Hybrid Deep Learning Model. IEEE Access 2022, 10, 7003–7015. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Yazdani, A.; Elmi, A.; Abbasi, A.; Ghanooni, P. Exploiting a fleet of UAVs for monitoring and data acquisition of a distributed sensor network. Neural Comput. Appl. 2022, 34, 5041–5054. [Google Scholar] [CrossRef]
- Ali, G.; Hass, J.; Sill, A.; Hojati, E.; Dang, T.; Chen, Y. Redfish-Nagios: A Scalable Out-of-Band Data Center Monitoring Framework Based on Redfish Telemetry Model. In Proceedings of the Fifth International Workshop on Systems and Network Telemetry and Analytics, Minneapolis, MN, USA, 30 June 2022; pp. 3–11. [Google Scholar] [CrossRef]
- Redfish Telemetry White Paper. 2020. Available online: https://www.dmtf.org/sites/default/files/standards/documents/DSP2051_1.0.0.pdf (accessed on 23 January 2023).
- Sofi, A.; Regita, J.J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network—An overview. Mech. Syst. Signal Process. 2022, 163, 108113. [Google Scholar] [CrossRef]
- Aouini, Z.; Pekar, A. NFStream: A flexible network data analysis framework. Comput. Netw. 2022, 204, 108719. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, D. The Calculation Method of the Network Security Probability of the Multi-rail Division Based on Fuzzy Inference. Mob. Networks Appl. 2022, 27, 1368–1377. [Google Scholar] [CrossRef]
- Tran, M.Q.; Elsisi, M.; Liu, M.K.; Vu, V.Q.; Mahmoud, K.; Darwish, M.M.F.; Abdelaziz, A.Y.; Lehtonen, M. Reliable Deep Learning and IoT-Based Monitoring System for Secure Computer Numerical Control Machines Against Cyber-Attacks With Experimental Verification. IEEE Access 2022, 10, 23186–23197. [Google Scholar] [CrossRef]
- Sengan, S.; Khalaf, O.I.; Rao, G.R.K.; Sharma, D.K.; Amarendra, K.; Hamad, A.A. Security-aware routing on wireless communication for E-health records monitoring using machine learning. Int. J. Reliab. Qual. E-Healthc. (IJRQEH) 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Qi, W.; Su, H. A Cybertwin Based Multimodal Network for ECG Patterns Monitoring Using Deep Learning. IEEE Trans. Ind. Informatics 2022, 18, 6663–6670. [Google Scholar] [CrossRef]
- Yu, L.; Zwetsloot, I.M.; Stevens, N.T.; Wilson, J.D.; Tsui, K.L. Monitoring dynamic networks: A simulation-based strategy for comparing monitoring methods and a comparative study. Qual. Reliab. Eng. Int. 2022, 38, 1226–1250. [Google Scholar] [CrossRef]
- Ageyev, D.; Radivilova, T.; Mulesa, O.; Bondarenko, O.; Mohammed, O. Traffic Monitoring and Abnormality Detection Methods for Decentralized Distributed Networks. In Information Security Technologies in the Decentralized Distributed Networks; Springer: Cham, Switzerland, 2022; pp. 287–305. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, N.; Yang, C. A novel iterative identification based on the optimised topology for common state monitoring in wireless sensor networks. Int. J. Syst. Sci. 2022, 53, 25–39. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Jahid, A.; Kelechi, A.H.; Kannadasan, R. Green IoT: A Review and Future Research Directions. Symmetry 2023, 15, 757. [Google Scholar] [CrossRef]
- Mahnke, W.; Leitner, S.H.; Damm, M. OPC Unified Architecture; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Pardo-Castellote, G. OMG data-distribution service: Architectural overview. In Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, Providence, RI, USA, 19–22 May 2003; 2003; pp. 200–206. [Google Scholar]
- eCAL—Enhanced Communication Abstraction Layer. A Fast Publish-Subscribe Cross-Platform Middleware Using Shared Memory and UDP. Available online: https://github.com/continental/ecal (accessed on 6 April 2022).
- Wu, M.Y.; Ke, C.K.; Lai, S.C. Optimizing the Routing of Urban Logistics by Context-Based Social Network and Multi-Criteria Decision Analysis. Symmetry 2022, 14, 1811. [Google Scholar] [CrossRef]
- Marcos-Pablos, S.; García-Peñalvo, F. Technological Ecosystems in Care and Assistance: A Systematic Literature Review. Sensors 2019, 19, 708. [Google Scholar] [CrossRef] [PubMed]
- Aldea, C.L. Elemente de Securitate a Datelor in Retele de Calculatoare; Transilvania University of Brasov Publishing House: Brasov, Romania, 2010. [Google Scholar]
- Aldea, C.L. RESTEasy JAX-RS Login Web Service and Android Client. Bull. Transilv. Univ. Brasov Math. Inform. Phys. Ser. III 2014, 7, 81–94. [Google Scholar]
- Tsai, C.C.; Jain, B.; Abdul, N.A.; Porter, D.E. A study of modern Linux API usage and compatibility. In Proceedings of the Eleventh European Conference on Computer Systems, London, UK, 18–21 April 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Schauland, D.; Jacobs, D. Managing the Windows Event Log. In Troubleshooting Windows Server with PowerShell; Apress: New York, NY, USA, 2016; pp. 17–33. [Google Scholar] [CrossRef]
- Trivedi, K.S.; Vasireddy, R.; Trindade, D.; Nathan, S.; Castro, R. Modeling High Availability. In Proceedings of the 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC’06), Riverside, CA, USA, 18–20 December 2006; pp. 154–164. [Google Scholar] [CrossRef]
- Mesbahi, M.R.; Rahmani, A.M.; Hosseinzadeh, M. Reliability and high availability in cloud computing environments: A reference roadmap. Hum. Centric Comput. Inf. Sci. 2018, 8, 20. [Google Scholar] [CrossRef]
- You, P.; Peng, Y.; Liu, W.; Xue, S. Security Issues and Solutions in Cloud Computing. In Proceedings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012; pp. 573–577. [Google Scholar] [CrossRef]
- Huang, S.Y.; Chen, C.Y.; Chen, J.Y.; Chao, H.C. A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges. Symmetry 2023, 15, 538. [Google Scholar] [CrossRef]
- Katal, A.; Wazid, M.; Goudar, R.H. Big data: Issues, challenges, tools and Good practices. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 404–409. [Google Scholar] [CrossRef]
- Introduction to Control Groups (cgroups). Available online: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01 (accessed on 23 January 2023).
- Solca, R.N.; Aldea, C.L. Network Resource Monitor: Cross Platform Network Resource Monitor. Available online: https://github.com/q1e123/Network-resource-monitor (accessed on 24 January 2023).
- Solca, R.N.; Aldea, C.L. Network Resource Monitor Web Application: Web App For Network Resource Monitor. Available online: https://github.com/q1e123/Network-resource-monitor-web (accessed on 24 January 2023).
- Reuters. SolarWinds Hack Was ’Largest and Most Sophisticated Attack’ Ever: Microsoft President. Available online: https://www.reuters.com/article/us-cyber-solarwinds-microsoft-idUSKBN2AF03R (accessed on 2 May 2023).
Data Image | CPU Usage | Memory Usage |
---|---|---|
Threshold | 5% | 20% |
Snapshot | 8% | 30% |
Data Image | RX Packages | TX Packages |
---|---|---|
Snapshot | 9600 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldea, C.L.; Bocu, R.; Solca, R.N. Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture. Symmetry 2023, 15, 1134. https://doi.org/10.3390/sym15061134
Aldea CL, Bocu R, Solca RN. Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture. Symmetry. 2023; 15(6):1134. https://doi.org/10.3390/sym15061134
Chicago/Turabian StyleAldea, Constantin Lucian, Razvan Bocu, and Robert Nicolae Solca. 2023. "Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture" Symmetry 15, no. 6: 1134. https://doi.org/10.3390/sym15061134
APA StyleAldea, C. L., Bocu, R., & Solca, R. N. (2023). Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture. Symmetry, 15(6), 1134. https://doi.org/10.3390/sym15061134