C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results
Abstract
:1. Introduction
2. Preliminaries
- (A1):
- if, and only if, , for all and
- (A2):
- , for all and ;
- (A3):
- , for all and .
- (B1):
- for all and if, and only if,
- (B2):
- , for all ;
- (B3):
- , for all ;
- (B4):
- , for all .
- (C1):
- if, and only if, , for all and
- (C2):
- , for all and ;
- (C3):
- , for all and ;
- (C4):
- , for all and .
- (D1):
- , and if, and only if, , for all and ;
- (D2):
- , for all and ;
- (D3):
- , for all and ;
- (D4):
- , for all and .
- (i)
- ϕ is continuous and increasing;
- (ii)
- if, and only if, ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ϕ maps the unit in A to the unit in B.
3. -Algebra-Valued Partial Modular Metric Space
- :
- , for all and ; if, and only if,
- :
- for all and ;
- :
- , for all and ;
- :
- , for all , and .
- (ii)
- For simplicity, one may consider the triplicate as a , instead of writing “Let be a -modular space and be a -partial modular metric.”
- (i)
- converges to l with respect to , whenever, for every , there exists such that , for all , i.e.,
- (ii)
- be Cauchy sequence with respect to , whenever, for every , there exists such that, for all , we have
- (iii)
- -partial modular space be complete with respect to if every Cauchy sequence with respect to converges to a point such that
- (i)
- is a partial modular Cauchy sequence in -partial modular space with if, and only if, it is Cauchy sequence in -modular space with .
- (ii)
- A -partial modular space with modular , is complete if, and only if, -modular space with modular , is complete. Furthermore,
- (iii)
- Assume that and as in a on L with modular . Then,
4. Some Fixed Point Results in
- (i)
- ;
- (ii)
- for all ,
- (i)
- ;
- (ii)
- for all ,
- (i)
- Clearly, .
- (ii)
- Moreover, and
5. Ulam–Hyers Stability Results in
- (a)
- Hence, Equation (12) is generalised Ulam–Hyers stable.
- (b)
- and if , are such that , then .
- (c)
- If such that , then
6. Application
- (i)
- There exist a continuous function such that, for all ;
- (ii)
- .
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Partial modular metric spaces | |
Modular metric spaces | |
Partial modular metric spaces | |
-algebra-valued metric spaces | |
-algebra-valued modular metric spaces | |
-algebra-valued partial metric spaces | |
-algebra-valued partial modular metric spaces |
References
- Ma, Z.; Jiang, L.; Sun, H. C*-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 206. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Ma, Z.; Jiang, L. C*-algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 222. [Google Scholar] [CrossRef]
- Alsulami, H.H.; Agarwal, R.P.; Karapınar, E.; Khojasteh, F. A short note on C*-valued contraction mappings. J. Inequal. Appl. 2016, 2016, 50. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Radenovic, S. Fixed point results in C*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 2016, 53. [Google Scholar] [CrossRef]
- Tomar, A.; Joshi, M. Note on results in C*-algebra-valued metric spaces. Elect. J. Math. Anal. 2021, 9, 262–264. [Google Scholar]
- Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
- Chistyakov, V.V. A Fixed point theorem for contractions in modular metric spaces. arXiv 2011, arXiv:1112:5561. [Google Scholar]
- Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011, 93. [Google Scholar] [CrossRef]
- Abdou, A.A.N.; Khamsi, M.A. Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013, 2013, 163. [Google Scholar] [CrossRef]
- Abobaker, H.; Ryan, R.A. Modular metric spaces. Ir. Math. Soc. Bull. 2017, 80, 35–44. [Google Scholar] [CrossRef]
- Shateri, T.L. C*-algebra-valued modular spaces and fixed point theorems. J. Fixed Point Theory Appl. 2017, 19, 1551–1560. [Google Scholar] [CrossRef]
- Moeini, B.; Ansari, A.H.; Park, C.; Shin, D.Y. C*-algebra-valued modular metric spaces and related fixed point results. J. Comput. Anal. Appl. 2019, 27, 211–220. [Google Scholar]
- Moeini, B.; Ansari, A.H. Common fixed points for C*-algebra-valued modular metric spaces via C*-class functions with application. arXiv 2017, arXiv:1708.01254. [Google Scholar]
- Moeini, B.; Ansari, A.H.; Park, C. JHR-operator pairs in C*-algebra-valued modular metric spaces and related fixed point results via C*-class functions. J. Fixed Point Theory Appl. 2018, 20, 17. [Google Scholar] [CrossRef]
- Das, D.; Mishra, L.N. Some fixed point results for JHR- operator pairs in C*-algebra valued modular b-metric spaces via C*-Class functions with applications. Adv. Stud. Contemp. Math. 2019, 29, 283–400. [Google Scholar]
- Das, D.; Mishra, L.N.; Mishra, V.N.; Rosales, H.G.; Dhaka, A.; Monteagudo, F.E.L.; Fernández, E.G.; Ramirez-delReal, T.A. C*-algebra valued modular G-metric spaces with applications in fixed point theory. Symmetry 2021, 13, 2003. [Google Scholar] [CrossRef]
- Das, D.; Mishra, L.N.; Mishra, V.N. C*-algebra valued modular S-metric spaces with applications in fixed point theory. Tbil. Math. J. 2021, 14, 111–126. [Google Scholar]
- Matthews, S.G. Partial metric topology. In Proceedings of the 8th Summer Conference on General Topology and Applications, New York, NY, USA, 18–20 June 1992. [Google Scholar]
- Chankad, S.; Kumar, D.; Park, C. C*-algebra valued partial metric space and fixed point theorems. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 37. [Google Scholar]
- Mlaiki, N.; Asim, M.; Imdad, M. C*-algebra-valued partial b-metric spaces and fixed point results with an application. J. Math. 2020, 8, 1981. [Google Scholar] [CrossRef]
- Das, D.; Narzary, S.; Singh, Y.M.; Khan, M.S.; Sessa, S. Some fixed point results on partial modular metric spaces. Axioms 2022, 11, 62. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Parvaneh, V. Meir-Keeler type contractive mappings in modular and partial modular metric spaces. Asian-Eur. J. Math. 2020, 13, 2050087. [Google Scholar] [CrossRef]
- Dung, N.V.; Hung, V.T.L.; Dolicanin-Djekic, D. An equivalence of results in C*-algebra valued b-metric and b-metric spaces. Appl. Gen. Topol. 2017, 18, 241–253. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, L.; Ma, Z. C*-algebra-valued G-metric spaces and related fixed point theorems. J. Funct. Space 2018, 2018, 3257189. [Google Scholar] [CrossRef]
- Ege, M.E.; Alaca, C. C*-algebra valued S-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 165–177. [Google Scholar]
- Sarma, A.; Goswami, N.; Das, D. Common Fixed Point Result in C*-algebra valued modular metric spaces with an application. AAMS 2019, 19, 1–20. [Google Scholar]
- Moeini, B.; Isik, H.; Ayadi, H. Related fixed point results via C*-class functions on C*-algebra valued Gb-metric spaces. Carpathian Math. Publ. 2020, 12, 94–106. [Google Scholar] [CrossRef]
- Asim, M.; Imad, M. C*-algebra valued in symmetric spares and fixed point results with an application. UPB Sci. Bull. Ser. A 2020, 82, 207–218. [Google Scholar]
- Asim, M.; Imad, M. C*-algebra valued extended b-metric spares and fixed point results with an application. Korean J. Math. 2020, 28, 17–30. [Google Scholar]
- Mustafa, R.; Omran, S.; Nguyen, Q.N. Fixed point theory using ψ-contractive mapping in C*-algebra valued b-metric space. Mathematics 2021, 9, 92. [Google Scholar] [CrossRef]
- Kumar, D.; Richi, D.; Park, C.; Lee, J.R. On fixed point in C*-algebra valued metric spaces using C*-class function. Int. J. Nonlinear Anal. Appl. 2021, 12, 1157–1161. [Google Scholar]
- Tomar, A.; Joshi, M.; Deep, A. Fixed points and its applications in C*-algebra valued partial metric space. TWMS J. Appl. Eng. Math. 2021, 11, 329–340. [Google Scholar]
- Tomar, A.; Joshi, M. On existence of fixed points and applications to a boundary value problem and a matrix equation in C*-Algebra valued partial metric spaces. Acta Univ. Sapientiae Math. 2022, 14, 131–145. [Google Scholar] [CrossRef]
- Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
- Zhu, K. An Introduction to Operator Algebras; CRC Press: Boca Raton, FL, USA, 1961. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94, 6. [Google Scholar] [CrossRef]
- Latif, A.; Reem Fahad Al Subaie, R.F.; Alansari, M.O. Fixed points of generalized multi-valued contractive mappings in metric type spaces. J. Nonlinear Var. Anal. 2022, 6, 123–138. [Google Scholar]
- Anjum, A.S.; Aage, C. Common fixed point theorem in F-metric spaces. J. Adv. Math. Stud. 2022, 15, 357–365. [Google Scholar]
- Shukla, S.; Radenović, S. Some common fixed point theorems for F-contraction type mappings in 0-complete partial metric spaces. J. Math. 2013, 2013, 878730. [Google Scholar] [CrossRef]
- Rossa, M.; Massit, H.; Kabbaj, S. Fixed point theorem for (ϕ, MF)-contraction on C*-algebra valued metric spaces. Asian J. Math. Appl. 2022, 2022, 1–8. [Google Scholar]
- Asif, A.; Nazam, M.; Arshad, M.; Og Kim, S. F-metric, F-contraction and common fixed point theorems with applications. Mathematics 2019, 7, 586. [Google Scholar] [CrossRef]
- Bota, M.F.; KarapJnar, E.; MleGniue, O. Ulam-Hyers stability results for fixed Point problems via α-ψ-contractive mapping in (b)-metric space. Abstr. Appl. Anal. 2013, 2013, 65–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narzary, S.; Das, D.; Singh, Y.M.; Khan, M.S.; Sessa, S. C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry 2023, 15, 1135. https://doi.org/10.3390/sym15061135
Narzary S, Das D, Singh YM, Khan MS, Sessa S. C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry. 2023; 15(6):1135. https://doi.org/10.3390/sym15061135
Chicago/Turabian StyleNarzary, Santanu, Dipankar Das, Yumnam Mahendra Singh, Mohammad Saeed Khan, and Salvatore Sessa. 2023. "C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results" Symmetry 15, no. 6: 1135. https://doi.org/10.3390/sym15061135
APA StyleNarzary, S., Das, D., Singh, Y. M., Khan, M. S., & Sessa, S. (2023). C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry, 15(6), 1135. https://doi.org/10.3390/sym15061135