Next Article in Journal
Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous Computer Networks through an Integrated System Architecture
Previous Article in Journal
Coefficient Bounds for Symmetric Subclasses of q-Convolution-Related Analytical Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results

by
Santanu Narzary
1,
Dipankar Das
1,2,
Yumnam Mahendra Singh
3,
Mohammad Saeed Khan
4 and
Salvatore Sessa
5,*
1
Department of Mathematical Sciences, Bodoland University, Kokrajhar 783370, Assam, India
2
Department of Mathematics, Dibrugarh University, Dibrugarh 786004, Assam, India
3
Department of Humanities and Basic Sciences, Manipur Institute of Technology, A Constitute College of Manipur University, Takyepat 795004, Manipur, India
4
Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Gauteng 0208, South Africa
5
Department of Architecture, Federico II Naples University, Via Toledo 402, 80134 Naples, Italy
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(6), 1135; https://doi.org/10.3390/sym15061135
Submission received: 9 March 2023 / Revised: 30 April 2023 / Accepted: 9 May 2023 / Published: 23 May 2023
(This article belongs to the Section Mathematics)

Abstract

:
In the present paper, we introduce the notion of C * -algebra-valued partial modular metric space satisfying the symmetry property that generalizes partial modular metric space, C * -algebra-valued partial metric space, and C * -algebra-valued modular metric space and discuss it with examples. Some fixed point results using ( ϕ , MF ) -contraction mapping are discussed in such space. In addition, we study the stability of obtained results in the spirit of Ulam and Hyers. As an application, we also provide the existence and uniqueness of the solution for a system of Fredholm integral equations.

1. Introduction

C * -algebra is attractive due to its importance in many scientific fields such as mathematical analysis, quantum field theory, statistical mechanics, string theory, and non-commutative geometry. In 2014, Ma et al. [1] initiated the concept of C * -algebra-valued metric space (in short, C a v * M S ) and established some fixed point results with applications in integral and operator equations. On the other hand, Bakhtin [2] introduced b-metric space as a generalization of metric space (see also Czerwik [3]). In 2015, Ma and Jiang [4] introduced C * -algebra-valued b-metric space (in short, C a v * b M S ) and established some fixed point results with applications. In 2016, Alsulami et al. [5] and Kadelburg et al. [6] claimed that the fixed point results obtained in C a v * M S and C a v * b M S can be obtained easily from their metric counterparts. In 2021, Tomar and Joshi [7] demonstrated that the results in C a v * M S cannot be obtained directly from their metric counterparts unless C * -algebra A is R , the set of real numbers. In 2010, Chistyakov [8] initiated modular metric space (in short, M M S ), which generalizes metric space. In 2011, Chistyakov [9] established fixed point results in M M S (for more details see also [10,11,12]). Recently, Shateri [13] introduced the concept of C * -algebra-valued modular space (in short, C a v * M S ), which is a generalization of a modular space and proves some fixed point theorems for self-maps with contractive or expansive conditions in such spaces. In 2017, Moeini et al. [14,15,16] initiated the notion of C * -algebra-valued modular metric space (in short, C a v * M M S ) and developed some fixed point results with contractive conditions. Das et al. in [17,18,19], initiated the notions of C * -algebra-valued modular b-metric space (in short, C a v * M b M S ), C * -algebra-valued modular S-metric space (in short, C a v * M S M S ), and C * -algebra-valued modular G-metric space (in short, C a v * M G M S ), respectively, and established some fixed point results in such respective spaces with applications. In 1994, Matthews [20] introduced the concept of partial metric space (in short, p M S ). In 2019, Chandok et al. [21] initiated the notion of C * -algebra-valued partial metric space (in short, C a v * p M S ) and established some fixed point results. Recently, in 2020, Mlaiki et al. [22] enlarged C a v * p M S by introducing the notion of C * -algebra-valued partial b-metric space (in short, C a v * p b M S ) and proved some results related to fixed points. Very recently, in 2022, Das et al. [23] redefined the concept of partial modular metric space (in short, p M M S ) [24] and proved some fixed point results with an application to an integral equation. For the past decade, due to the significance of C * -algebra, many researchers have been studying fixed point theory in C a v * M S and its extended class of spaces (for more detail one may refer to [21,25,26,27,28,29,30,31,32,33,34,35]).
This paper consists of seven sections, wherein Section 1 and Section 2 are the introduction and a preliminary, respectively. In Section 3, we introduce the notion of C * -algebra-valued partial modular metric space and discuss some basic properties with suitable examples. Section 4 includes the results related to fixed points. In Section 5, we discuss the stability of the obtained results using the Ulam–Hyers technique. Section 6 is an application for existence and uniqueness results for a system of Fredholm integral equations, and the last section presents some concluding remarks on C * -algebra-valued partial modular metric space.

2. Preliminaries

Recall that a Banach algebra A (over the field C , the set of complex numbers) is said to be a C * -algebra if there exists an involution in A (i.e., : A A satisfying l * * = l for each l A ) such that for all l 1 , l 2 A and for all α , μ C , the following axiom holds:
( l 1 l 2 ) * = l 2 * l 1 * ;   ( l 1 * ) * = l 1 ,   ( α l 1 + μ l 2 ) * = α ¯ l 1 * + μ ¯ l 2 *   and   l 1 * l 1   =   l 1 2 .
It is easy to see from the above that l   =   l * for all l A . The pair ( A , ) is called unital C * -algebra with unity I A . An element l A is called apositive transform; in denote it by θ l , if l = l * and its spectrum σ ( l ) = { λ R : λ I A l is not invertible } R + , where θ is the zero of the element in A . We denote A + as the set of all positive elements of A . Define a partial ordering on A such that l 1 l 2 if, and only if, θ l 2 l 1 , i.e., l 2 l 1 A + . (For more details refer to [21,22]).
Definition 1
([14]). Let L be a non-empty set. A function ω s : ( 0 , + ) × L × L A + is called a C * -algebra-valued modular metric ( C a v * M M ) on L if it satisfies the following axioms:
(A1): 
ω ξ s ( l 1 , l 2 ) = θ if, and only if, l 1 = l 2 , for all l 1 , l 2 L and ξ > 0 ;
(A2): 
ω ξ s ( l 1 , l 2 ) = ω ξ s ( l 2 , l 1 ) , for all l 1 , l 2 L and ξ > 0 ;
(A3): 
ω ξ + μ s ( l 1 , l 2 ) ω ξ s ( l 1 , l 3 ) + ω μ s ( l 3 , l 2 ) , for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
A C a v * M M , i.e., ω s on L, is said to be convex if the triangular inequality ( A 3 ) is replaced by
ω ξ + μ s ( l 1 , l 2 ) ξ ξ + μ ω ξ s ( l 1 , l 3 ) + μ ξ + μ ω μ s ( l 3 , l 2 ) , for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
For any l 0 L , the set L ω s = { l 1 L : lim ξ ω ξ s ( l 1 , l 0 ) = θ } is called a C * -algebra-valued modular space with metric d ω s 0 : L ω s × L ω s A given by
d ω s 0 = inf ξ > 0   :   ω ξ s ( l 1 , l 2 ) ξ , l 1 , l 2 L ω s .
Moreover, if ω s is convex then the set will be
L ω s * = l 1 L : ξ = ξ ( l 1 ) > 0 such that ω ξ s ( l 1 , l 0 ) < ,
with the metric d ω s * : L ω s * × L ω s * A given by
d ω s * = inf ξ > 0   :   ω ξ ( l 1 , l 2 ) 1 , l 1 , l 2 L ω s * .
Definition 2
([21]). Let L be a non-empty set. A function p : L × L A is called a C * -algebra-valued partial metric on L if it satisfies:
(B1): 
θ p ( l 1 , l 2 ) for all l 1 , l 2 L and p ( l 1 , l 1 ) = p ( l 2 , l 2 ) = p ( l 1 , l 2 ) if, and only if, l 1 = l 2 ;
(B2): 
p ( l 1 , l 1 ) p ( l 1 , l 2 ) , for all l 1 , l 2 L ;
(B3): 
p ( l 1 , l 2 ) = p ( l 2 , l 1 ) , for all l 1 , l 2 L ;
(B4): 
p ( l 1 , l 2 ) p ( l 1 , l 3 ) + p ( l 3 , l 2 ) p ( l 3 , l 3 ) , for all l 1 , l 2 , l 3 L .
Then the triplet (L, A , p ) is called a C * -algebra-valued partial metric space (in short, C a v * p M S ).
C a v * p M , i.e., p on L, generates a T 0 -topology τ p with a base, defined by the family of p-open balls, { B p ( x , ϵ ) : l 1 L , θ ϵ A + } , where B p ( x , ϵ ) = { l 2 L , p ( l 1 , l 2 ) p ( x , x ) + ϵ } .
Definition 3
([24]). A function p : ( 0 , + ) × L × L [ 0 , + ) is called a partial modular metric ( p M M ) on L if it satisfies:
(C1): 
p ξ ( l 1 , l 1 ) = p ξ ( l 2 , l 2 ) = p ξ ( l 1 , l 2 ) if, and only if, l 1 = l 2 , for all l 1 , l 2 L and ξ > 0 ;
(C2): 
p ξ ( l 1 , l 1 ) p ξ ( l 1 , l 2 ) , for all l 1 , l 2 L and ξ > 0 ;
(C3): 
p ξ ( l 1 , l 2 ) = p ξ ( l 2 , l 1 ) , for all l 1 , l 2 L and ξ > 0 ;
(C4): 
p ξ + μ ( l 1 , l 2 ) p ξ ( l 1 , l 3 ) + p μ ( l 3 , l 2 ) p ξ ( l 1 , l 1 ) + p ξ ( l 3 , l 3 ) + p μ ( l 3 , l 3 ) + p μ ( l 2 , l 2 ) 2 , for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
If l 1 = l 2 = l 3 in the triangular inequality ( C 4 ) , then a discrepancy occurs in the non-zero self distance for the partial modular metric.
Recently, Das et al. [23] redefined the notion of partial modular metric space as follows:
Definition 4.
A function ω p : ( 0 , + ) × L × L [ 0 , + ) is called a p M M on L if it satisfies:
(D1): 
ω ξ p ( l 1 , l 1 ) = ω μ p ( l 1 , l 1 ) , and ω ξ p ( l 1 , l 1 ) = ω ξ p ( l 2 , l 2 ) = ω ξ p ( l 1 , l 2 ) if, and only if, l 1 = l 2 , for all l 1 , l 2 L and ξ , μ > 0 ;
(D2): 
ω ξ p ( l 1 , l 1 ) ω ξ p ( l 1 , l 2 ) , for all l 1 , l 2 L and ξ > 0 ;
(D3): 
ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 2 , l 1 ) , for all l 1 , l 2 L and ξ > 0 ;
(D4): 
ω ξ + μ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 3 ) + ω μ p ( l 3 , l 2 ) ω ξ p ( l 3 , l 3 ) , for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
A p M M , i.e., ω p on L, is said to be convex if ( D 4 ) is replaced by
ω ξ + μ p ( l 1 , l 2 ) ξ ξ + μ ω ξ p ( l 1 , l 3 ) + μ ξ + μ ω μ p ( l 3 , l 2 ) ξ ξ + μ ω ξ p ( l 3 , l 3 ) ,
for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
For any l 0 L , the set
L ω p = l 1 L : lim ξ ω ξ p ( l 1 , l 0 ) = c ,
for some c 0 is a partial modular space. Moreover, if ω is convex then the set will be
L ω p * = l 1 L : ξ = ξ ( l 1 ) > 0 such that ω ξ p ( l 1 , l 0 ) < .
Definition 5
([23]). A p M M , ω p on L, is said to be weakly convex if it satisfies ( D 1 ) , ( D 2 ) , ( D 3 ) , and the following:
ω ξ + μ p ( l 1 , l 2 ) α ( ξ , μ ) ω ξ p ( l 1 , l 3 ) + ( 1 α ( ξ , μ ) ) ω μ p ( l 3 , l 2 ) α ( ξ , μ ) ω ξ p ( l 3 , l 3 ) ,
for all l 1 , l 2 , l 3 L and μ , ξ > 0 , where α : ( 0 , ) × ( 0 , ) ( 0 , 1 ) .
Lemma 1
([23]). Let ω p be a p M M on L. Then ω s : ( 0 , ) × L × L [ 0 , ) is a modular metric on L, where
ω ξ s ( l 1 , l 2 ) = 2 ω ξ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) ,
for all ξ > 0 and l 1 , l 2 L .
Example 1
([23]). For a non-empty set L, let ω p be a p M M and ω s be a M M . Then for any arbitrary ξ > 0 and l 1 , l 2 L , ω ξ p ( l 1 , l 2 ) = ω ξ s ( l 1 , l 2 ) + | l 1 | + | l 2 | 2 defines a p M M .
Definition 6
([36,37]). Let ϕ : A + A + be positive if it holds the following axioms:
(i) 
ϕ is continuous and increasing;
(ii) 
ϕ ( l 1 ) = θ if, and only if, l 1 = θ ;
(iii) 
lim n ϕ n ( l 1 ) = θ .
Definition 7
([36,37]). Let A and B be two C * -algebras, and ϕ : A B . It is said to be a C * -homomorphism if it satisfies the following axioms:
(i) 
ϕ ( a l 1 + b l 2 ) = a ϕ ( l 1 ) + b ϕ ( l 2 ) ;
(ii) 
ϕ ( l 1 l 2 ) = ϕ ( l 1 ) ϕ ( l 2 ) ;
(iii) 
ϕ ( l 1 * ) = ϕ ( l 1 ) * ;
(iv) 
ϕ maps the unit in A to the unit in B.
In [38], Wardowski introduced a new type of contraction named as F -contraction. Since then, development of fixed point theory can be seen with such type of contraction mapping (for further details, refer to [36,39,40,41,42,43]). Inspired by Wardowski in [36], Rossafi et al. [42] introduced ( ϕ , MF ) -contraction as follows:
Definition 8.
Let ( L , A , d ) be a C * -algebra-valued metric space and T be a self mapping on L. It is said to be a ( ϕ , MF ) -contraction if
M ( T l 1 , T l 2 ) θ F ( M ( T l 1 , T l 2 ) ) + ϕ ( M ( l 1 , l 2 ) ) F ( M ( l 1 , l 2 ) ) ,
for all l 1 , l 2 L , where
M ( l 1 , l 2 ) = max d ( l 1 , l 2 ) , d ( l 1 , T l 1 ) , d ( l 2 , T l 2 ) , d ( l 1 , T l 2 ) + d ( l 2 , T l 1 ) 2 ,
mapping ϕ : A + A is an -homomorphism and F : A + A be a continuous and non-decreasing function such that F ( l 1 ) = θ if, and only if, l 1 = θ .

3. C * -Algebra-Valued Partial Modular Metric Space

In this section, we introduce the notion of C * -algebra-valued partial modular metric space (in short, C a v * p M M S ) satisfying the symmetry property and discuss it with examples T.
Definition 9.
Let L be a non-empty set. A function ω p : ( 0 , + ) × L × L A is called a C * -algebra-valued partial modular metric on L if it satisfies:
( P 1 * )   : 
  ω ξ p ( l 1 , l 1 ) = ω μ p ( l 1 , l 1 ) , for all l 1 , l 2 L and ξ , μ > 0 ; ω ξ p ( l 1 , l 1 ) = ω ξ p ( l 2 , l 2 ) = ω ξ p ( l 1 , l 2 ) if, and only if, l 1 = l 2 ;
( P 2 * )   : 
ω ξ p ( l 1 , l 1 ) ω ξ p ( l 1 , l 2 ) , for all l 1 , l 2 L and ξ > 0 ;
( P 3 * )   : 
ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 2 , l 1 ) , for all l 1 L and ξ , μ > 0 ;
( P 4 * )   : 
ω ξ + μ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 3 ) + ω μ p ( l 3 , l 2 ) ω ξ p ( l 3 , l 3 ) , for all ξ > 0 , μ > 0 and l 1 , l 2 , l 3 L .
A C a v * p M M , i.e., ω p on L, is said to be convex if ( P 4 * ) is replaced by the following:
( P 5 * ) : ω ξ + μ p ( l 1 , l 2 ) ξ ξ + μ ω ξ p ( l 1 , l 3 ) + μ ξ + μ ω μ p ( l 3 , l 2 ) ξ ξ + μ ω ξ p ( l 3 , l 3 ) ,
for all l 1 , l 2 , l 3 L and μ , ξ > 0 .
Definition 10.
A C a v * p M M , i.e., ω p on L, is said to be weakly convex if it satisfies ( P 1 * ) , ( P 2 * ) , ( P 3 * ) , and the following:
( P 6 * ) : ω ξ + μ p ( l 1 , l 2 ) α ( ξ , μ ) ω ξ p ( l 1 , l 3 ) + ( 1 α ( ξ , μ ) ) ω μ p ( l 3 , l 2 ) α ( ξ , μ ) ω ξ p ( l 3 , l 3 ) ,
for all l 1 , l 2 , l 3 L and μ , ξ > 0 , where α : ( 0 , ) × ( 0 , ) ( 0 , 1 ) .
Definition 11.
Let ω p be a C a v * p M M on L. For any l 0 L , the set
L ω p = l 1 L : lim ξ ω ξ p ( l 1 , l 0 ) = c ,
for some θ c A + is called C * -algebra-valued partial modular space. Moreover, if ω p is convex, then the set will be
L ω p * = l 1 L : ξ = ξ ( l 1 ) > 0 such that ω ξ p ( l 1 , l 0 ) < .
Remark 1.
(i)For every l 1 , l 2 L , the function ξ ω p ( l 1 , l 2 ) A is non-increasing. In fact, for all l 1 , l 2 L and 0 < μ < ξ :
ω ξ p ( p 1 , p 2 ) ω μ p ( p 1 , p 2 ) .
(ii) 
For simplicity, one may consider the triplicate ( L ω p , A , ω p ) as a C a v * p M M S , instead of writing “Let L ω p be a C a v * -modular space and ω p be a C a v * -partial modular metric.”
Example 2.
Let ω s be a C a v * M M on a non-empty set L. Define ω ξ p ( l 1 , l 2 ) = ω ξ s ( l 1 , l 2 ) + | c | , where c θ . Then for any arbitrary θ c A + , ω p is a C a v * p M M . Moreover, it is convex if ω s is a C a v * -convex modular metric with c = θ .
Example 3.
Let L = C and A = M 2 ( C ) , the class of linear and bounded operators on Hilbert space C 2 . Define ω p : ( 0 , ) × L × L A by
ω ξ p ( l 1 , l 2 ) = 1 ξ d i a g ( | l 1 l 2 | , | l 1 l 2 | ) + I A ,
for all ξ > 0 , l 1 , l 2 L , and I is the identity matrix. Then ω p is a C a v * p M M , but neither convex C a v * p M M nor weakly convex C a v * p M M .
Proof. 
( P 1 * ) , ( P 2 * ) , and ( P 3 * ) hold immediately. Now we check ( P 4 * ) , ( P 5 * ) , and ( P 6 * ) .
( P 4 * ) : For any ξ > 0 and μ > 0 , 1 ξ + μ < 1 ξ o r 1 μ .
ω ξ + μ p ( l 1 , l 2 ) = 1 ξ + μ diag ( | l 1 l 2 | , | l 1 l 2 | ) + I A 1 ξ + μ ( diag ( | l 1 l 3 | , | l 1 l 3 | ) + diag ( | l 3 l 2 | , | l 3 l 2 | ) ) + I A 1 ξ diag ( | l 1 l 3 | , | l 1 l 3 | ) + I A + 1 μ diag ( | l 3 l 2 | , | l 3 l 2 | ) + I A [ 1 ξ diag ( | l 3 l 3 | , | l 3 l 3 | ) + I A ] = ω ξ p ( l 1 , l 3 ) + ω μ p ( l 3 , l 2 ) ω μ p ( l 3 , l 3 ) .
Hence, ω p is a C a v * p M M .
( P 5 * ) : ω ξ + μ p ( l 1 , l 2 ) = 1 ξ + μ diag ( | l 1 l 2 | , | l 1 l 2 | ) + I A 1 ξ + μ ( diag ( | l 1 l 3 | , | l 1 l 3 | ) + diag ( | l 3 l 2 | , | l 3 l 2 | ) ) + I A = ξ ξ + μ [ 1 ξ diag ( | l 1 l 3 | , | l 1 l 3 | ) + I A ] + μ ξ + μ [ 1 μ diag ( | l 3 l 2 | , | l 3 l 2 | ) + I A ] = ξ ξ + μ ω ξ p ( l 1 , l 3 ) + μ ξ + μ ω μ p ( l 3 , l 2 ) .
Hence, ω p is not a convex C a v * p M M . Similarly, it can be shown that ω p is also not a weakly convex C a v * p M M . □
Example 4.
Let L = C and A = M 2 ( C ) , the class of linear and bounded operators on Hilbert space C 2 . Define ω p : ( 0 , ) × L × L A by
ω ξ p ( l 1 , l 2 ) = e ξ d i a g ( | l 1 l 2 | , | l 1 l 2 | ) + I A ,
for all ξ > 0 , l 1 , l 2 C , and I A is the identity matrix. Then ω p is a C a v * p M M on L ω p .
Example 5.
Let L = C and A = M 2 ( C ) , the class of linear and bounded operators on Hilbert space C 2 . Define ω p : ( 0 , ) × L × L A by
ω ξ p ( l 1 , l 2 ) = 1 ξ d i a g ( | l 1 l 2 | , | l 1 l 2 | ) + d i a g ( max { l 1 , l 2 } , max { l 1 , l 2 } ) ,
for all ξ > 0 , l 1 , l 2 C . Then ω p is a C a v * p M M on L ω p .
Lemma 2.
Let ω p be a C a v * p M M on L such that
ω ξ s ( l 1 , l 2 ) = 2 ω ξ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) .
Then, ω s is a C a v * M M .
Proof. 
(i) By definition:
ω ξ p ( l 1 , l 1 ) ω ξ p ( l 1 , l 2 ) ω ξ p ( l 2 , l 2 ) ω ξ p ( l 2 , l 1 ) = ω ξ p ( l 1 , l 2 ) .
So, we have ω ξ s ( l 1 , l 2 ) θ .
(ii) If l 1 = l 2 , then w ξ s ( l 1 , l 1 ) = 2 ω ξ p ( l 1 , l 1 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 1 , l 1 ) = θ .
Suppose ω ξ s ( l 1 , l 2 ) = θ , then 2 ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) . Using (1), we have
2 ω ξ p ( l 1 , l 1 ) 2 ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 1 , l 1 ) + ω ξ p ( l 2 , l 2 ) 2 ω ξ p ( l 2 , l 2 ) 2 ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 1 , l 1 ) + ω ξ p ( l 2 , l 2 ) .
Consequently, we have
ω ξ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 1 ) a n d ω ξ p ( l 2 , l 2 ) ω ξ p ( l 1 , l 2 ) . Thus, we get ω ξ p ( l 1 , l 2 ) = ω ξ p ( l 1 , l 1 ) = ω ξ p ( l 2 , l 2 ) l 1 = l 2 .
(iii) Similarity:
ω ξ s ( l 1 , l 2 ) = 2 ω ξ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) = 2 ω ξ p ( l 2 , l 1 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) = ω ξ s ( l 2 , l 1 ) .
(iv) Triangular inequality:
ω ξ + μ s ( l 1 , l 3 ) = 2 ω ξ + μ p ( l 1 , l 3 ) ω ξ + μ p ( l 1 , l 1 ) ω ξ + μ p ( l 3 , l 3 ) 2 [ ω ξ p ( l 1 , l 2 ) + ω μ p ( l 2 , l 3 ) ω ξ p ( l 2 , l 2 ) ] ω ξ p ( l 1 , l 1 ) ω μ p ( l 3 , l 3 ) = 2 ω ξ p ( l 1 , l 2 ) ω ξ p ( l 1 , l 1 ) ω ξ p ( l 2 , l 2 ) + 2 ω μ p ( l 2 , l 3 ) ω μ p ( l 2 , l 2 ) ω μ p ( l 3 , l 3 ) = ω ξ s ( l 1 , l 2 ) + w μ s ( l 2 , l 3 ) .
Hence, ω s is a C a v * M M . □
Definition 12.
Let ω p be a C a v * p M M on L, and l , { l n } L with ξ > 0 . Then
(i) 
{ l n } converges to l with respect to A , whenever, for every ϵ > 0 , there exists N N such that ω ξ p ( l n , l ) ω ξ p ( l , l ) ϵ , for all n N , i.e.,
l i m n ( ω ξ p ( l n , l ) ω ξ p ( l , l ) ) = θ .
(ii) 
{ l n } be Cauchy sequence with respect to A , whenever, for every ϵ > 0 , there exists N N such that, for all m , n N , we have
( ω ξ p ( l n , l m ) 1 2 ω ξ p ( l n , l n ) 1 2 ω ξ p ( l m , l m ) ) ( ω ξ p ( l n , l m ) 1 2 ω ξ p ( l n , l n ) 1 2 ω ξ p ( l m , l m ) ) * ϵ 2 .
(iii) 
C a v * -partial modular space L ω p be complete with respect to A if every Cauchy sequence with respect to A converges to a point l L such that
l i m n ( ω ξ p ( l n , l ) 1 2 ω ξ p ( l n , l n ) 1 2 ω ξ p ( l , l ) ) = θ .
Lemma 3.
Let ω p be a C a v * p M M on L ω p .
(i) 
{ x n } is a partial modular Cauchy sequence in C a v * -partial modular space L ω p with ω p if, and only if, it is Cauchy sequence in C a v * -modular space L ω s with ω s .
(ii) 
A C a v * -partial modular space L ω p with modular ω p , ( L ω p , A , ω p ) is complete if, and only if, C a v * -modular space L ω s with modular ω s , ( L w s , A , w s ) is complete. Furthermore,
l i m n ω ξ s ( l n , l ) = θ l i m n ( 2 ω ξ p ( l n , l ) ω ξ p ( l n , l n ) ω ξ p ( l , l ) = θ o r l i m n ω ξ s ( l n , l ) = θ l i m n ( ω ξ p ( l n , l ) ω ξ p ( l n , l n ) ) = θ a n d l i m n ( ω ξ p ( l n , l ) ω ξ p ( l , l ) ) = θ .
(iii) 
Assume that l n and y n as n in a C a v * p M M on L with modular ω p . Then,
l i m n ( ω ξ p ( l n , y n ) ω ξ p ( l n , l n ) ) = ω ξ p ( l , y ) ω ξ p ( l , l ) a n d l i m n ( ω ξ p ( l n , y n ) ω ξ p ( y n , y n ) ) = ω ξ p ( l , y ) ω ξ p ( y , y ) .

4. Some Fixed Point Results in C av * pMMS

Theorem 1.
Let L ω p be a complete C a v * -partial modular space and ω p be a C a v * p M M . Define two self mappings P , Q : L ω p L ω p satisfying the following conditions:
(i) 
P ( L ω p ) Q ( L ω p ) ;
(ii) 
for all l 1 , l 2 L ω p ,
ω ξ p ( P l 1 , Q l 2 ) θ F ( ω ξ p ( P l 1 , Q l 2 ) ) + ϕ ( M ( l 1 , l 2 ) ) F ( M ( l 1 , l 2 ) ) ,
where M ( l 1 , l 2 ) = max ω ξ p ( l 1 , l 2 ) , ω ξ p ( l 1 , P l 1 ) , ω ξ p ( l 2 , Q l 2 ) , [ ω 2 ξ p ( l 1 , Q l 2 ) + ω 2 ξ p ( l 2 , P l 1 ) ] 2 , ϕ : A + A is a -homomorphism and F : A + A , be a continuous and non-decreasing function such that F ( l 1 ) = θ l 1 = θ . If P has fixed point u L ω p , then u is a unique common fixed point of P and Q.
Proof. 
Let P u = u , u L ω p . Assume, ω ξ p ( P u , Q u ) θ , we have
F ( ω ξ p ( P u , Q u ) ) F ( M ( u , u ) ) ϕ ( M ( u , u ) ) ,
where
M ( u , u ) = max { ω ξ p ( u , u ) , ω ξ p ( u , P u ) , ω ξ p ( u , Q u ) , [ ω 2 ξ p ( u , Q u ) + ω 2 ξ p ( u , P u ) ] 2 } = ω ξ p ( u , Q u ) .
Clearly,
F ( ω ξ p ( u , Q u ) ) F ( ω ξ p ( u , Q u ) ) ϕ ( ω ξ p ( u , Q u ) ) ,
which is a contradiction, as ϕ is positive. So, ω ξ p ( u , Q u ) = θ . Similarly, we can show that ω ξ p ( Q u , u ) = θ . Hence, u is a common fixed point of P and Q.
Let there exist another u * L ω p such that Q u * = P u * = u * , then we have
F ( ω ξ p ( u , u * ) ) F ( M ( u , u * ) ) ϕ ( M ( u , u * ) ) ,
where
M ( u , u * ) = max { ω ξ p ( u , u * ) , ω ξ p ( u , P u ) , ω ξ p ( u * , Q u * ) , [ ω 2 ξ p ( u , Q u * ) + ω 2 ξ p ( u * , P u ) ] 2 } = ω ξ p ( u , u * ) .
Therefore, we obtain
F ( ω ξ p ( u , u * ) ) F ( ω ξ p ( u , u * ) ) ϕ ( ω ξ p ( u , u * ) ) ,
which is a contradiction, as ϕ is positive. So, u = u * . □
Theorem 2.
Let L ω p be a complete C a v * -modular space and ω p be a C a v * p M M . Define two self mappings P , Q : L ω p L ω p satisfying the following conditions:
(i) 
P ( L ω p ) Q ( L ω p ) ;
(ii) 
for all l 1 , l 2 L ω p ,
ω ξ p ( P l 1 , Q l 2 ) θ F ( ω ξ p ( P l 1 , Q l 2 ) ) + ϕ ( M ( l 1 , l 2 ) ) F ( M ( l 1 , l 2 ) ) ,
where M ( l 1 , l 2 ) = max ω ξ p ( l 1 , l 2 ) , ω ξ p ( l 1 , P l 1 ) , ω ξ p ( l 2 , Q l 2 ) , [ ω 2 ξ p ( l 1 , Q l 2 ) + ω 2 ξ p ( l 2 , P l 1 ) ] 2 , ϕ : A + A is a -homomorphism and F : A + A be a continuous and non-decreasing function such that F ( l 1 ) = θ if, and only if, l 1 = θ . Then P and Q have a unique common fixed point in L ω p .
Proof. 
Let l 0 L ω p be any point. Define a sequence { l n } , where n N { 0 } such that P l 2 n = l 2 n + 1 and Q l 2 n + 1 = l 2 n + 2 . If l m = l m + 1 , for all m N { 0 } . Setting m = 2 n , then we have
M ( l 2 n , l 2 n + 1 ) = max { ω ξ p ( l 2 n , l 2 n + 1 ) , ω ξ p ( l 2 n , P l 2 n ) , ω ξ p ( l 2 n + 1 , Q l 2 n + 1 ) , [ ω 2 ξ p ( l 2 n , Q l 2 n + 1 ) + ω 2 ξ p ( l 2 n + 1 , P l 2 n ) ] 2 } = max { ω ξ p ( l 2 n , l 2 n ) , ω ξ p ( l 2 n , l 2 n ) , ω ξ p ( l 2 n , l 2 n + 2 ) , [ ω 2 ξ p ( l 2 n , l 2 n + 2 ) + ω 2 ξ p ( l 2 n , l 2 n ) ] 2 } = ω ξ p ( l 2 n , l 2 n + 2 ) .
Then, we have
F ( ω ξ p ( P l 2 n , Q l 2 n + 1 ) ) F ( M ( l 2 n , l 2 n + 1 ) ) ϕ ( M ( l 2 n , l 2 n + 1 ) ) F ( ω ξ p ( l 2 n , l 2 n + 2 ) ) F ( ω ξ p ( l 2 n , l 2 n + 2 ) ) ϕ ( ω ξ p ( l 2 n , l 2 n + 2 ) ) .
Hence, a contradiction arises, as ϕ is positive. So, ω ξ p ( l 2 n , l 2 n + 2 ) = θ . Clearly, we get l 2 n = l 2 n + 1 = l 2 n + 2 . Similarly, we have l 2 n = l 2 n + 1 = l 2 n + 2 = l 2 n + 3 = , and so l 2 n = P l 2 n = Q l 2 n , i.e., l 2 n is the common fixed point. Now, let l m l m + 1 , for all m = 0 , 1 , 2 , Assuming, ω ξ p ( l 2 n , l 2 n 1 ) θ we have
M ( l 2 n , l 2 n 1 ) = max { ω ξ p ( l 2 n , l 2 n 1 ) , ω ξ p ( l 2 n , P l 2 n ) , ω ξ p ( l 2 n 1 , Q l 2 n 1 ) , [ ω 2 ξ p ( l 2 n , Q l 2 n 1 ) + ω 2 ξ p ( l 2 n 1 , P l 2 n ) ] 2 } = max { ω ξ p ( l 2 n , l 2 n 1 ) , ω ξ p ( l 2 n , l 2 n + 1 ) , ω ξ p ( l 2 n 1 , l 2 n ) , [ ω 2 ξ p ( l 2 n , l 2 n ) + ω 2 ξ p ( l 2 n 1 , l 2 n + 1 ) ] 2 } = max { ω ξ p ( l 2 n , l 2 n 1 ) , ω ξ p ( l 2 n , l 2 n + 1 ) , ω ξ p ( l 2 n 1 , l 2 n ) , [ ω ξ p ( l 2 n , l 2 n ) + ω ξ p ( l 2 n 1 , l 2 n ) + ω ξ p ( l 2 n , l 2 n + 1 ) ω ξ p ( l 2 n , l 2 n ) ] 2 } = max ω ξ p ( l 2 n , l 2 n 1 ) , ω ξ p ( l 2 n , l 2 n + 1 ) .
Let M ( l 2 n , l 2 n 1 ) = ω ξ p ( l 2 n , l 2 n + 1 ) , then
F ( ω ξ p ( P l 2 n , Q l 2 n 1 ) ) F ( M ( l 2 n , l 2 n 1 ) ) ϕ ( M ( l 2 n , l 2 n 1 ) ) F ( ω ξ p ( l 2 n + 1 , l 2 n ) ) F ( ω ξ p ( l 2 n , l 2 n + 1 ) ) ϕ ( ω ξ p ( l 2 n , l 2 n + 1 ) ) .
Hence, a contradiction arises, as ϕ is positive. So, M ( l 2 n , l 2 n 1 ) = ω ξ p ( l 2 n , l 2 n 1 ) , and we get
F ( ω ξ p ( P l 2 n , Q l 2 n 1 ) ) F ( M ( l 2 n , l 2 n 1 ) ) ϕ ( M ( l 2 n , l 2 n 1 ) ) F ( ω ξ p ( l 2 n + 1 , l 2 n ) ) F ( ω ξ p ( l 2 n , l 2 n 1 ) ) ϕ ( ω ξ p ( l 2 n , l 2 n 1 ) ) F ( ω ξ p ( l 2 n , l 2 n 1 ) ) .
In a similar manner, we can also show that
F ( ω ξ p ( P l 2 n , Q l 2 n + 1 ) ) F ( M ( l 2 n , l 2 n + 1 ) ) ϕ ( M ( l 2 n , l 2 n + 1 ) ) F ( ω ξ p ( l 2 n + 1 , l 2 n + 2 ) ) F ( ω ξ p ( l 2 n , l 2 n + 1 ) ) ϕ ( ω ξ p ( l 2 n , l 2 n + 1 ) ) F ( ω ξ p ( l 2 n , l 2 n + 1 ) ) .
Since F is non-decreasing, so from (2) and (3), ω ξ p ( l m , l m + 1 ) is monotonically decreasing in A . Let there exist θ β A + such that lim n ω ξ p ( l m , l m + 1 ) = β . Hence, from (2) and (3), we have
lim n F ( ω ξ p ( l m , l m + 1 ) ) = θ , i . e . , lim n ω ξ p ( l m , l m + 1 ) = θ .
Now we show that { l m } is a C * -algebra-valued partial modular Cauchy sequence in L ω p . By Lemma 3, it is sufficient to prove that { Q l n + 1 } is a Cauchy sequence in L w s . For the fact θ ω ξ p ( l m , l m ) ω ξ p ( l m , l m + 1 ) , we have
lim n ω ξ p ( l m , l m ) = θ .
Additionally, θ ω ξ p ( l m + 1 , l m + 1 ) ω ξ p ( l m + 1 , l m + 2 ) implies
lim n ω ξ p ( l m + 1 , l m + 1 ) = θ .
Let { l m } not be a Cauchy sequence in L w s if possible. Then there exist ϵ > 0 and subsequences { l m ( k ) } and { l n ( k ) } with n ( k ) > m ( k ) > k such that
w ξ s ( l m ( k ) , l n ( k ) ) > ϵ ; ξ > 0 .
Now, corresponding to m ( k ) , we can choose n ( k ) such that it is the smallest integer with n ( k ) > m ( k ) and satisfying the above inequality. Hence,
w ξ s ( l m ( k ) , l n ( k ) 1 ) ϵ ; ξ > 0 .
We have
w ξ s ( l m ( k ) , l n ( k ) ) w ξ 2 s ( l m ( k ) , l n ( k ) 1 ) + w ξ 2 s ( l n ( k ) 1 , l n ( k ) ) ϵ + w ξ 2 s ( l n ( k ) 1 , l n ( k ) ) .
Again,
w ξ s ( l n ( k ) 1 , l n ( k ) ) = 2 ω ξ p ( l n ( k ) 1 , l n ( k ) ) ω ξ p ( l n ( k ) 1 , l n ( k ) 1 ) ω ξ p ( l n ( k ) , l n ( k ) ) .
Using (3), (4), (5) and (7), we have
lim k w ξ s ( l n ( k ) 1 , l n ( k ) = θ .
Using (6) and (8), we have
ϵ < lim k w ξ s ( l m ( k ) , l n ( k ) ) < ϵ + θ .
This implies
lim k w ξ s ( l m ( k ) , l n ( k ) ) = ϵ .
In a similar manner, we can show that
lim k w ξ s ( l m ( k ) 1 , l n ( k ) 1 ) = ϵ .
Thus, we have
lim k ω ξ p ( l m ( k ) 1 , l n ( k ) 1 ) = 1 2 lim k 2 ω ξ p ( l m ( k ) 1 , l n ( k ) 1 ) ω ξ p ( l n ( k ) 1 , l n ( k ) 1 ) ω ξ p ( l m ( k ) 1 , l m ( k ) 1 = 1 2 lim k w ξ s ( l m ( k ) 1 , l n ( k ) 1 ) = ϵ 2 .
Since ω ξ p ( l m ( k ) 1 , l n ( k ) 1 ) , ω ξ p ( l m ( k ) , l n ( k ) ) A + and
lim k ω ξ p ( l m ( k ) 1 , l n ( k ) 1 ) = lim k ω ξ p ( l m ( k ) , l n ( k ) ) = ϵ 2 ,
there exists b A + with b = ϵ 2 such that
lim k ω ξ p ( l m ( k ) 1 , l n ( k ) 1 ) = lim k ω ξ p ( l m ( k ) , l n ( k ) ) = b .
Now, from triangular inequality, we have
ω ξ p ( l m ( k ) , l n ( k ) ) ω ξ k p ( l m ( k ) , l m ( k ) + 1 ) + ω ξ k p ( l m ( k ) + 1 , l m ( k ) + 2 ) + + ω ξ k p ( l n ( k ) 1 , l n ( k ) ) ω ξ k p ( l m ( k ) + 1 , l m ( k ) + 1 ) + ω ξ k p ( l m ( k ) + 2 , l m ( k ) + 2 ) + + ω ξ k p ( l n ( k ) 1 , l n ( k ) 1 ) .
Using (4)–(6), we have
lim n ω ξ p ( l m ( k ) , l n ( k ) ) θ b = θ ,
which is a contradiction. Thus, { l m } is a Cauchy sequence in L w s . By Lemma 3, { l m } is a Cauchy sequence in complete C * -algebra-valued partial modular metric space L ω p . Hence, there exists some v L ω p such that
lim n , m ω ξ p ( l m , l n ) = lim m ω ξ p ( l m , v ) = ω ξ p ( v , v ) = θ and lim n ω ξ p ( Q l 2 n + 1 , v ) = lim n ω ξ p ( P l 2 n , v ) = θ .
Now, letting ω ξ p ( P v , l 2 n + 2 ) θ , we have
F ( ω ξ p ( P v , Q l 2 n + 1 ) ) F ( M ( v , l 2 n + 1 ) ) ϕ ( M ( v , l 2 n + 1 ) ) ,
where
lim n M ( v , l 2 n + 1 ) = lim n max { ω ξ p ( v , l 2 n + 1 ) , ω ξ p ( v , P v ) , ω ξ p ( l 2 n + 1 , Q l 2 n + 1 ) , [ ω 2 ξ p ( v , Q l 2 n + 1 ) + ω 2 ξ p ( l 2 n + 1 , P v ) ] 2 } = ω ξ p ( P v , v ) ) .
As n , from (11) we obtain
F ( ω ξ p ( P v , v ) ) F ( ω ξ p ( P v , v ) ) ϕ ( ω ξ p ( P v , v ) ) ,
which is a contradiction, as ϕ is positive. So, ω ξ p ( P v , v ) = θ .
Similarly, we can show that ω ξ p ( Q v , v ) = θ . Hence, v is a common fixed point of P and Q.
As in Theorem 1, the uniqueness of a common fixed point can be shown. □
We set P = Q in Theorem 2 and have the following corollary.
Corollary 1.
Let L ω p be a complete C a v * -modular space and ω p be a C a v * p M M . Define a self mapping P : L ω p L ω p satisfying the following conditions: for all l 1 , l 2 L ω p ,
ω ξ p ( P l 1 , P l 2 ) θ F ( ω ξ p ( P l 1 , P l 2 ) ) + ϕ ( M ( l 1 , l 2 ) ) F ( M ( l 1 , l 2 ) ) ,
where, M ( l 1 , l 2 ) = max ω ξ p ( l 1 , l 2 ) , ω ξ p ( l 1 , P l 1 ) , ω ξ p ( l 2 , P l 2 ) , [ ω 2 ξ p ( l 1 , P l 2 ) + ω 2 ξ p ( l 2 , P l 1 ) ] 2 , ϕ : A + A is a -homomorphism, and F : A + A be a continuous and non-decreasing function such that F ( l 1 ) = θ l 1 = θ . Then P has a unique fixed point in L ω p .
Theorem 3.
Let L ω p be a complete C a v * -modular space and ω p be a C a v * p M M . Define a mapping P : L ω p L ω p satisfying the following:
M ( P l 1 , P l 2 ) θ F ( M ( P l 1 , P l 2 ) ) + ϕ ( M ( l 1 , l 2 ) ) F ( M ( l 1 , l 2 ) ) ,
for all l 1 , l 2 L , where
M ( l 1 , l 2 ) = max d ( l 1 , l 2 ) , d ( l 1 , P l 1 ) , d ( l 2 , P l 2 ) , d ( l 1 , P l 2 ) + d ( l 2 , P l 1 ) 2 ,
mapping ϕ : A + A is a -homomorphism, and F : A + A be a continuous and non-decreasing function such that F ( l 1 ) = θ if, and only if, l 1 = θ . Then P has a unique fixed point in L ω p .
Theorem 4.
Let L ω p be a complete C a v * -modular space and ω p be a C a v * p M M . Define a self mapping P : L ω p L ω p satisfying
ω ξ p ( P l 1 , P l 2 ) q 2 ω 2 ξ p ( l 1 , l 2 ) , for all l 1 , l 2 L ω p ,
where q 2 < 1 . Then P has a unique fixed point.
Example 6.
Let ( L ω p , A , ω p ) be a C a v * p M M S defined as in Example 3, where L = C , A = M 2 ( C ) and ω ξ p ( l 1 , l 2 ) = 1 ξ diag ( | l 1 l 2 | , | l 1 l 2 | ) + diag ( max { l 1 , l 2 } , max { l 1 , l 2 } ) , for all ξ > 0 , l 1 , l 2 L ω p , and I be the identity matrix.
Let P and Q be self mappings on L ω p such that P l 1 = l 1 4 and Q l 1 = l 1 2 . Let F : A + A define by F ( T ) = T 2 ; and ϕ : A + A + define by ϕ ( T ) = T 2 2 .
(i) 
Clearly, P ( L ω p ) Q ( L ω p ) .
(ii) 
Moreover, ω ξ p ( P l 1 , Q l 2 ) ) θ and
F ( ω ξ p ( P l 1 , Q l 2 ) ) = [ ω ξ p ( P l 1 , Q l 2 ) ] 2 = ω ξ p l 1 4 , l 2 2 2 = 1 ξ diag l 1 4 l 2 2 , l 1 4 l 2 2 + diag max { l 1 4 , l 2 2 } , max { l 1 4 , l 2 2 } 2 1 2 1 ξ diag ( | l 1 l 2 | , | l 1 l 2 | ) + diag ( max { l 1 , l 2 } , max { l 1 , l 2 } ) 2 = 1 2 F ( ω ξ p ( M ( l 1 , l 2 ) ) ) = F ( ω ξ p ( M ( l 1 , l 2 ) ) ) 1 2 F ( ω ξ p ( M ( l 1 , l 2 ) ) ) = F ( ω ξ p ( M ( l 1 , l 2 ) ) ) ( ω ξ p ( M ( l 1 , l 2 ) ) ) 2 2 .
This implies that
F ( ω ξ p ( P l 1 , Q l 2 ) ) + ϕ ( ω ξ p ( M ( l 1 , l 2 ) ) F ( ω ξ p ( M ( l 1 , l 2 ) ) ) ,
where M ( l 1 , l 2 ) = max ω ξ p ( l 1 , l 2 ) , ω ξ p ( l 1 , P l 1 ) , ω ξ p ( l 2 , Q l 2 ) , [ ω 2 ξ p ( l 2 , P l 1 ) + ω 2 ξ p ( l 1 , Q l 2 ) ] 2 . Thus, all the conditions of Theorem 2 are satisfied. So, 0 is the unique common fixed point of P and Q.

5. Ulam–Hyers Stability Results in C av * pMMS

Let ( L ω p , A , ω p ) be a C a v * p M M S and P : L ω p L ω p a mapping. The fixed point
P z = z
is called generalised Ulam–Hyers stability [44] if, and only if, there exists increasing and continuous (at 0) mapping, λ : R + R + with λ ( 0 ) = 0 such that for every ϵ > 0 and z * L ω p , an ϵ -solution of the fixed point Equation (12), i.e., z * , satisfies the inequality
ω ξ p ( z * , P z * ) ϵ .
There exists a solution x * L ω p of (12) such that ω ξ p ( z * , x * ) λ ( ϵ ) . If there exists k > 0 such that λ ( s ) = k . s for each s R + , then the fixed point Equation (12) is said to be an Ulam–Hyers stability.
Theorem 5.
Let ( L ω p , A , ω p ) be a complete C a v * p M M S satisfying all the conditions of Theorem 4, with ω ξ p ( P z * , z * ) γ , γ > 0 . Then Equation (12) is Ulam–Hyers stable. Moreover, the function π : [ 0 , ) [ 0 , ) such that π ( r ) = α r , is strictly increasing and onto.
(a) 
Hence, Equation (12) is generalised Ulam–Hyers stable.
(b) 
F i x ( P ) = { x * } and if { x n } ( L ω p , A , ω ξ p ) , n N are such that ω ξ p ( l n , P l n ) 0 a s n , then l n x * a s n .
(c) 
If Q : L ω p L ω p such that ω ξ p ( P l , Q l ) η , for all l L ω p , η [ 0 , ) , then p * F i x ( Q ) ω ξ p ( x * , p * ) π 1 ( α 1 q 2 η )
Proof. 
(a) Let F i x ( P ) = { x * } . Let ϵ > 0 and z * L ω p be a solution of Equation (13):
ω ξ p ( x * , z * ) = ω ξ p ( P x * , z * ) ω ξ 2 p ( P x * , P z * ) + ω ξ 2 p ( P z * , z * ) ω ξ 2 p ( P z * , P z * ) ω ξ 2 p ( P x * , P z * ) + γ q 2 ω ξ p ( x * , z * ) + γ ω ξ p ( x * , z * ) 1 1 q 2 γ , w h e r e 1 1 q 2 > 0 .
So,
π ( ω ξ p ( x * , z * ) ) = α ω ξ p ( x * , z * ) α 1 q 2 ϵ ω ξ p ( x * , z * ) π 1 α 1 q 2 ϵ .
This shows that Equation (12) is generalised Ulam–Hyers stable.
(b) Let F i x ( P ) = { x * } , ϵ > 0 and { l n } L ω p .
ω ξ p ( l n , x * ) ) ω ξ 2 p ( l n , P l n ) + ω ξ 2 p ( P l n , P x * ) ω ξ 2 p ( P l n , P l n ) q 2 ω ξ p ( l n , x * ) + ω ξ 2 p ( l n , P l n ) 1 1 q 2 ω ξ 2 p ( l n , P l n ) 0 a s n .
Therefore, l n x * a s n .
(c) Let F i x ( P ) = { x * } and p * F i x ( Q ) .
ω ξ p ( x * , p * ) = ω ξ p ( P x * , p * ) ω ξ 2 p ( P x * , P p * ) + ω ξ 2 p ( P p * , p * ) ω ξ 2 p ( P p * , P p * ) q 2 ω ξ p ( x * , p * ) + η ω ξ p ( x * , p * ) 1 1 q 2 η .
Therefore,
π ( ω ξ p ( x * , p * ) = α ω ξ p ( x * , p * ) α 1 q 2 η ω ξ p ( x * , p * ) π 1 α 1 q 2 η .

6. Application

Consider the following integral equation (see [22,36]):
x ( γ ) = E B ( γ , v , x ( v ) ) d v + h ( γ ) , γ , v E ,
where E is a measurable set, B : E × E × R R and h L ( E ) . Let L = L ( E ) , H = L 2 ( E ) and L ( H ) = A . Define ω p : ( 0 , ) × X × X A + by
ω ξ p ( l 1 , l 2 ) = β | l 1 l 2 ξ | + I for all l 1 , l 2 , I L ω p ,
where β u : H H is a multiplicative operator defined by β u ( γ ) = u γ .
Theorem 6.
Let x , y L ω p , and P : L ω p L ω p be two self mapping such that
(i) 
There exist a continuous function ψ : E × E R such that
| B ( γ , v , x ( v ) ) B ( γ , v , y ( v ) ) | | ψ ( γ , v ) | ( | x ( v ) y ( v ) | ) , for all γ , v E ;
(ii) 
sup γ E E | ψ ( γ , v ) | d v 1 .
Then the integral Equation (14) has a unique solution in L ω p .
Proof. 
Define
P x ( γ ) = E B ( γ , v , x ( v ) ) d v + h ( γ ) , γ , v E .
For any u H , we have
ω ξ p ( P x , P y ) = sup u = 1 ( β | P x P y ξ | + I u , u ) = sup u = 1 E 1 ξ | E B ( γ , v , x ( v ) ) B ( γ , v , y ( v ) ) d v | u ( γ ) u ( γ ) ¯ d γ + sup u = 1 E u ( γ ) u ( γ ) ¯ d γ I A sup u = 1 E 1 ξ | E | B ( γ , v , x ( v ) ) B ( γ , v , y ( v ) ) | d v | u ( γ ) | 2 d γ + sup u = 1 E | u ( γ ) | 2 d γ I A 1 ξ sup u = 1 E [ E | ψ ( γ , v ) | ( | x ( v ) y ( v ) | + I A I A ) d v ] | u ( γ ) | 2 d γ + I A 1 ξ sup u = 1 E [ E | ψ ( γ , v ) | d v ] | u ( γ ) | 2 d γ x y 1 ξ sup γ E E | ψ ( γ , v ) | d v sup u = 1 E | u ( γ ) | 2 d γ x y 1 ξ x y = ω ξ p ( x , y ) .
This implies that ω ξ p ( P x , P y ) & ω ξ p ( x , y ) . Let F : A + A define by F ( T ) = T 2 and ϕ : A + A + define by ϕ ( T ) = T 2 2 . Moreover, ω ξ p ( P l 1 , P l 2 ) ) θ and
F ( ω ξ p ( P l 1 , P l 2 ) ) + ϕ ( ω ξ p ( M ( l 1 , l 2 ) ) F ( ω ξ p ( M ( l 1 , l 2 ) ) ) ,
where M ( l 1 , l 2 ) = max ω ξ p ( l 1 , l 2 ) , ω ξ p ( l 1 , P l 1 ) , ω ξ p ( l 2 , P l 2 ) , [ ω 2 ξ p ( l 2 , P l 1 ) + ω 2 ξ p ( l 1 , P l 2 ) ] 2 . So, by Corollary 1, we have a unique fixed point of P, i.e., the integral Equation (14) has a unique solution. □

7. Conclusions

We introduce the notion of C a v * p M M S and prove some fixed point results using ( ϕ , MF ) -contraction mappings, which extend/generalize many results given in the literature. Some properties and examples related to C a v * p M M S are discussed. C a v * p M M S is a generalization of p M M S , C a v * p M S , and C a v * M M S .
Limitations: Fixed point results in C a v * p M M S can be obtained from their partial metric counterparts when C * -algebra, A is the real set R . There might be a more generalized space than C a v * p M M S .
Future Scope: p M M S and C a v * p M M S play a crucial role in the study of generalized partial metric spaces. With the amalgamation of C a v * p M M S and other existing spaces, several generalized spaces can be studied. Moreover, C a v * p M M S paves the way for the possible generalization of existing concepts and applications in different branches of mathematical sciences.

Author Contributions

D.D., S.N. and Y.M.S. contributed to the methodology and the original draft preparation. Y.M.S., M.S.K. and S.S. reviewed and edited the manuscript. S.S. designed the research and supported funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the anonymous referees for their valuable constructive comments and suggestions, which improved the quality of this paper in the present form.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
p M S Partial modular metric spaces
M M S Modular metric spaces
p M M S Partial modular metric spaces
C a v * M S C -algebra-valued metric spaces
C a v * M M S C -algebra-valued modular metric spaces
C a v * p M S C -algebra-valued partial metric spaces
C a v * p M M S C -algebra-valued partial modular metric spaces

References

  1. Ma, Z.; Jiang, L.; Sun, H. C*-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 206. [Google Scholar] [CrossRef]
  2. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 1989, 30, 26–37. [Google Scholar]
  3. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  4. Ma, Z.; Jiang, L. C*-algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 222. [Google Scholar] [CrossRef]
  5. Alsulami, H.H.; Agarwal, R.P.; Karapınar, E.; Khojasteh, F. A short note on C*-valued contraction mappings. J. Inequal. Appl. 2016, 2016, 50. [Google Scholar] [CrossRef]
  6. Kadelburg, Z.; Radenovic, S. Fixed point results in C*-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 2016, 53. [Google Scholar] [CrossRef]
  7. Tomar, A.; Joshi, M. Note on results in C*-algebra-valued metric spaces. Elect. J. Math. Anal. 2021, 9, 262–264. [Google Scholar]
  8. Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. 2010, 72, 1–14. [Google Scholar] [CrossRef]
  9. Chistyakov, V.V. A Fixed point theorem for contractions in modular metric spaces. arXiv 2011, arXiv:1112:5561. [Google Scholar]
  10. Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011, 93. [Google Scholar] [CrossRef]
  11. Abdou, A.A.N.; Khamsi, M.A. Fixed point results of pointwise contractions in modular metric spaces. Fixed Point Theory Appl. 2013, 2013, 163. [Google Scholar] [CrossRef]
  12. Abobaker, H.; Ryan, R.A. Modular metric spaces. Ir. Math. Soc. Bull. 2017, 80, 35–44. [Google Scholar] [CrossRef]
  13. Shateri, T.L. C*-algebra-valued modular spaces and fixed point theorems. J. Fixed Point Theory Appl. 2017, 19, 1551–1560. [Google Scholar] [CrossRef]
  14. Moeini, B.; Ansari, A.H.; Park, C.; Shin, D.Y. C*-algebra-valued modular metric spaces and related fixed point results. J. Comput. Anal. Appl. 2019, 27, 211–220. [Google Scholar]
  15. Moeini, B.; Ansari, A.H. Common fixed points for C*-algebra-valued modular metric spaces via C*-class functions with application. arXiv 2017, arXiv:1708.01254. [Google Scholar]
  16. Moeini, B.; Ansari, A.H.; Park, C. JHR-operator pairs in C*-algebra-valued modular metric spaces and related fixed point results via C*-class functions. J. Fixed Point Theory Appl. 2018, 20, 17. [Google Scholar] [CrossRef]
  17. Das, D.; Mishra, L.N. Some fixed point results for JHR- operator pairs in C*-algebra valued modular b-metric spaces via C*-Class functions with applications. Adv. Stud. Contemp. Math. 2019, 29, 283–400. [Google Scholar]
  18. Das, D.; Mishra, L.N.; Mishra, V.N.; Rosales, H.G.; Dhaka, A.; Monteagudo, F.E.L.; Fernández, E.G.; Ramirez-delReal, T.A. C*-algebra valued modular G-metric spaces with applications in fixed point theory. Symmetry 2021, 13, 2003. [Google Scholar] [CrossRef]
  19. Das, D.; Mishra, L.N.; Mishra, V.N. C*-algebra valued modular S-metric spaces with applications in fixed point theory. Tbil. Math. J. 2021, 14, 111–126. [Google Scholar]
  20. Matthews, S.G. Partial metric topology. In Proceedings of the 8th Summer Conference on General Topology and Applications, New York, NY, USA, 18–20 June 1992. [Google Scholar]
  21. Chankad, S.; Kumar, D.; Park, C. C*-algebra valued partial metric space and fixed point theorems. Proc. Indian Acad. Sci. Math. Sci. 2019, 129, 37. [Google Scholar]
  22. Mlaiki, N.; Asim, M.; Imdad, M. C*-algebra-valued partial b-metric spaces and fixed point results with an application. J. Math. 2020, 8, 1981. [Google Scholar] [CrossRef]
  23. Das, D.; Narzary, S.; Singh, Y.M.; Khan, M.S.; Sessa, S. Some fixed point results on partial modular metric spaces. Axioms 2022, 11, 62. [Google Scholar] [CrossRef]
  24. Hosseinzadeh, H.; Parvaneh, V. Meir-Keeler type contractive mappings in modular and partial modular metric spaces. Asian-Eur. J. Math. 2020, 13, 2050087. [Google Scholar] [CrossRef]
  25. Dung, N.V.; Hung, V.T.L.; Dolicanin-Djekic, D. An equivalence of results in C*-algebra valued b-metric and b-metric spaces. Appl. Gen. Topol. 2017, 18, 241–253. [Google Scholar] [CrossRef]
  26. Shen, C.; Jiang, L.; Ma, Z. C*-algebra-valued G-metric spaces and related fixed point theorems. J. Funct. Space 2018, 2018, 3257189. [Google Scholar] [CrossRef]
  27. Ege, M.E.; Alaca, C. C*-algebra valued S-metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 165–177. [Google Scholar]
  28. Sarma, A.; Goswami, N.; Das, D. Common Fixed Point Result in C*-algebra valued modular metric spaces with an application. AAMS 2019, 19, 1–20. [Google Scholar]
  29. Moeini, B.; Isik, H.; Ayadi, H. Related fixed point results via C*-class functions on C*-algebra valued Gb-metric spaces. Carpathian Math. Publ. 2020, 12, 94–106. [Google Scholar] [CrossRef]
  30. Asim, M.; Imad, M. C*-algebra valued in symmetric spares and fixed point results with an application. UPB Sci. Bull. Ser. A 2020, 82, 207–218. [Google Scholar]
  31. Asim, M.; Imad, M. C*-algebra valued extended b-metric spares and fixed point results with an application. Korean J. Math. 2020, 28, 17–30. [Google Scholar]
  32. Mustafa, R.; Omran, S.; Nguyen, Q.N. Fixed point theory using ψ-contractive mapping in C*-algebra valued b-metric space. Mathematics 2021, 9, 92. [Google Scholar] [CrossRef]
  33. Kumar, D.; Richi, D.; Park, C.; Lee, J.R. On fixed point in C*-algebra valued metric spaces using C*-class function. Int. J. Nonlinear Anal. Appl. 2021, 12, 1157–1161. [Google Scholar]
  34. Tomar, A.; Joshi, M.; Deep, A. Fixed points and its applications in C*-algebra valued partial metric space. TWMS J. Appl. Eng. Math. 2021, 11, 329–340. [Google Scholar]
  35. Tomar, A.; Joshi, M. On existence of fixed points and applications to a boundary value problem and a matrix equation in C*-Algebra valued partial metric spaces. Acta Univ. Sapientiae Math. 2022, 14, 131–145. [Google Scholar] [CrossRef]
  36. Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
  37. Zhu, K. An Introduction to Operator Algebras; CRC Press: Boca Raton, FL, USA, 1961. [Google Scholar]
  38. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94, 6. [Google Scholar] [CrossRef]
  39. Latif, A.; Reem Fahad Al Subaie, R.F.; Alansari, M.O. Fixed points of generalized multi-valued contractive mappings in metric type spaces. J. Nonlinear Var. Anal. 2022, 6, 123–138. [Google Scholar]
  40. Anjum, A.S.; Aage, C. Common fixed point theorem in F-metric spaces. J. Adv. Math. Stud. 2022, 15, 357–365. [Google Scholar]
  41. Shukla, S.; Radenović, S. Some common fixed point theorems for F-contraction type mappings in 0-complete partial metric spaces. J. Math. 2013, 2013, 878730. [Google Scholar] [CrossRef]
  42. Rossa, M.; Massit, H.; Kabbaj, S. Fixed point theorem for (ϕ, MF)-contraction on C*-algebra valued metric spaces. Asian J. Math. Appl. 2022, 2022, 1–8. [Google Scholar]
  43. Asif, A.; Nazam, M.; Arshad, M.; Og Kim, S. F-metric, F-contraction and common fixed point theorems with applications. Mathematics 2019, 7, 586. [Google Scholar] [CrossRef]
  44. Bota, M.F.; KarapJnar, E.; MleGniue, O. Ulam-Hyers stability results for fixed Point problems via α-ψ-contractive mapping in (b)-metric space. Abstr. Appl. Anal. 2013, 2013, 65–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Narzary, S.; Das, D.; Singh, Y.M.; Khan, M.S.; Sessa, S. C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry 2023, 15, 1135. https://doi.org/10.3390/sym15061135

AMA Style

Narzary S, Das D, Singh YM, Khan MS, Sessa S. C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry. 2023; 15(6):1135. https://doi.org/10.3390/sym15061135

Chicago/Turabian Style

Narzary, Santanu, Dipankar Das, Yumnam Mahendra Singh, Mohammad Saeed Khan, and Salvatore Sessa. 2023. "C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results" Symmetry 15, no. 6: 1135. https://doi.org/10.3390/sym15061135

APA Style

Narzary, S., Das, D., Singh, Y. M., Khan, M. S., & Sessa, S. (2023). C*-Algebra-Valued Partial Modular Metric Spaces and Some Fixed Point Results. Symmetry, 15(6), 1135. https://doi.org/10.3390/sym15061135

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop