A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel
Abstract
:1. Introduction
2. Geological Overview of the Baihetan Hydropower Station
2.1. General Project Information
2.2. Engineering Geological Conditions
2.3. Geological Conditions of the Diversion Tunnels in the Baihetan Station
3. Basalt CJRM Geological Numerical Model Establishment
3.1. Construction of CJRM Geometric Model with Geological Parameters
3.2. Establishment of Numerical Model
3.3. Validation of the Basalt Geological Numerical Model
4. Numerical Simulation of Tunnel Excavation in CJRM with Different Dip Angles and Discussion
4.1. Simulation Scheme of Tunnel Excavation
4.2. Analysis of Stress Characteristics during Excavation of Tunnels in CJRM with Different Dip Angles
4.3. Analysis of Displacement Characteristics during Excavation of Tunnels in CJRM with Different Dip Angles
5. Numerical Simulation of Tunnel Overloading after Excavation in CJRM with Different Dip Angles and Discussion
5.1. Simulation Scheme of Tunnel Overloading after Excavation
5.2. Safety Factor of CJRM with Different Dip Angles Assessed by Overloading
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilman, J.J. Basalt Columns: Large Scale Constitutional Supercooling? J. Volcanol. Geotherm. Res. 2009, 184, 347–350. [Google Scholar] [CrossRef]
- Mondal, T.K.; Aditya, C.; Arnab, S.; Saurodeep, C. Understanding the Maturity of Columnar Joints and Its Spatial Relationship with Eruptive Centre: A Critical Appraisal from the Rajmahal Basalt, India. Phys. Earth Planet. Inter. 2022, 326, 106867. [Google Scholar] [CrossRef]
- Li, Y.Q.; Liu, J.Z. Late Cenozoic Columnar-Jointed Basaltic Lavas in Eastern and Southeastern China: Morphologies, Structures, and Formation Mechanisms. Bull. Volcanol. 2020, 82, 1–23. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.Y.; Wang, H.L.; Wang, R.B.; Yan, L.; Shi, A.C. Anisotropic Mechanical Characteristics and Energy Evolution of Artificial Columnar Jointed Rock Masses Subjected to Multi-Level Cyclic Loading. Int. J. Fatigue 2022, 165, 14. [Google Scholar] [CrossRef]
- Xiao, W.M.; Deng, R.G.; Zhong, Z.B.; Fu, X.M.; Wang, C.Y. Experimental Study on the Mechanical Properties of Simulated Columnar Jointed Rock Masses. J. Geophys. Eng. 2015, 12, 80–89. [Google Scholar] [CrossRef]
- Panji, M.; Hasanlouyi Saeed, M. Time-History Responses on the Surface by Regularly Distributed Enormous Embedded Cavities: Incident Sh-Waves. Earthq. Sci. 2018, 31, 137–153. [Google Scholar] [CrossRef]
- Mehdi, P.; Mojtabazadeh-Hasanlouei, S. On Subsurface box-shaped lined tunnel under incident SH-wave propagation. Front. Struct. Civ. Eng. 2021, 15, 948–960. [Google Scholar] [CrossRef]
- Mojtabazadeh-Hasanlouei, S.; Panji, M.; Kamalian, M. Attenuated orthotropic time-domain half-space BEM for SH-wave scattering problems. Geophys. J. Int. 2022, 229, 1881–1913. [Google Scholar] [CrossRef]
- Xia, Y.J.; Zhang, C.Q.; Zhou, H.; Chen, J.L.; Gao, Y.; Liu, N.; Chen, P.Z. Structural characteristics of columnar jointed basalt in drainage tunnel of Baihetan hydropower station and its influence on the behavior of P-wave anisotropy. Eng. Geol. 2020, 264, 105304. [Google Scholar] [CrossRef]
- Zhu, S.; Zheng, J.H.; Zhu, Z.D.; Zhu, Q.Z.; Zhou, L.M. Experiments on three-dimensional flaw dynamic evolution of transparent rock-like material under osmotic pressure. Tunn. Undergr. Space Technol. 2022, 128, 13. [Google Scholar] [CrossRef]
- Wei, Y.F.; Chen, Q.; Huang, H.; Xue, X.H. Study on creep models and parameter inversion of columnar jointed basalt rock masses. Eng. Geol. 2021, 290, 106206. [Google Scholar] [CrossRef]
- Shan, Z.G.; Di, S.J. Loading-unloading test analysis of anisotropic columnar jointed basalts. J. Zhejiang Univ. Sci. A 2013, 14, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Wang, Z.; Xu, J.; Zhou, M.; Jiang, Q.; Li, G. Study on Deformation and Control Measures of Columnar Jointed Basalt for Baihetan Super-High Arch Dam Foundation. Rock Mech. Rock Eng. 2017, 51, 2569–2595. [Google Scholar] [CrossRef]
- Sun, Q.C.; Li, S.J.; Guo, H.S.; Zheng, M.Z.; Yang, Z.Y. In situ test of excavation damaged zone of columnar jointed rock masses under different borehole conditions. Bull. Eng. Geol. Environ. 2021, 80, 2991–3007. [Google Scholar] [CrossRef]
- Lin, P.; Shi, J.; Wei, P.; Fan, Q.; Wang, Z. Shallow unloading deformation analysis on Baihetan super-high arch dam foundation. Bull. Eng. Geol. Environ. 2019, 78, 5551–5568. [Google Scholar] [CrossRef]
- Lu, W.B.; Zhu, Z.D.; He, Y.X.; Que, X.C. Strength Characteristics and Failure Mechanism of a Columnar Jointed Rock Mass Under Uniaxial, Triaxial, and True Triaxial Confinement. Rock Mech. Rock Eng. 2021, 54, 2425–2439. [Google Scholar] [CrossRef]
- Lu, W.B.; Zhu, Z.D.; Que, X.C.; Zhang, C.; He, Y.X. Anisotropic Constitutive Model of Intermittent Columnar Jointed Rock Masses Based on the Cosserat Theory. Symmetry 2020, 12, 823. [Google Scholar] [CrossRef]
- Que, X.C.; Zhu, Z.D.; Lu, W.B. Anisotropic constitutive model of pentagonal prism columnar jointed rock mass. Bull. Eng. Geol. Environ. 2020, 79, 269–286. [Google Scholar] [CrossRef]
- Que, X.C.; Zhu, Z.D.; Niu, Z.H.; Lu, W.N. Estimating the strength and deformation of columnar jointed rock mass based on physical model test. Bull. Eng. Geol. Environ. 2021, 80, 1557–1570. [Google Scholar] [CrossRef]
- Que, X.C.; Zhu, Z.D.; Zhou, L.M.; Niu, Z.H.; Huang, H.N. Strength and Failure Characteristics of an Irregular Columnar Jointed Rock Mass Under Polyaxial Stress Conditions. Rock Mech. Rock Eng. 2022, 55, 7223–7242. [Google Scholar] [CrossRef]
- Que, X.; Zhu, Z.; He, Y.; Niu, Z.; Huang, H. Strength and deformation characteristics of irregular columnar jointed rock mass: A combined experimental and theoretical study. J. Rock Mech. Geotech. 2023, 15, 429–441. [Google Scholar] [CrossRef]
- Xiangcheng, Q.; Zhende, Z.; Zihao, N.; Shu, Z.; Luxiang, W. A modified three-dimensional Hoek–Brown criterion for intact rocks and jointed rock masses. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 7. [Google Scholar]
- Zihao, N.; Zhende, Z.; Xiangcheng, Q.; Yanxin, H.; Xinghua, X. Hydromechanical behaviour of columnar jointed rock masses under true triaxial conditions: An experimental and theoretical investigation. Geoenergy Sci. Eng. 2023, 224, 211623. [Google Scholar]
- Niu, Z.H.; Zhu, Z.D.; Que, X.C. Constitutive Model of Stress-Dependent Seepage in Columnar Jointed Rock Mass. Symmetry 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Di, S.J.; Xu, W.Y.; Ning, Y.; Wang, W.; Wu, G.Y. Macro-mechanical properties of columnar jointed basaltic rock masses. J. Cent. South Univ. 2011, 18, 2143–2149. [Google Scholar] [CrossRef]
- Feng, X.T.; Hao, X.J.; Jiang, Q.; Li, S.J.; Hudson, J.A. Rock Cracking Indices for Improved Tunnel Support Design: A Case Study for Columnar Jointed Rock Masses. Rock Mech. Rock Eng. 2016, 49, 2115–2130. [Google Scholar] [CrossRef]
- Zhao, D.C.; Xia, Y.J.; Zhang, C.Q.; Tang, C.; Zhou, H.; Liu, N.; Singh, H.K.; Zhao, Z.X.; Chen, J.; Mu, C.Q. Failure modes and excavation stability of large-scale columnar jointed rock masses containing interlayer shear weakness zones. Int. J. Rock Mech. Min. Sci. 2022, 159, 21. [Google Scholar] [CrossRef]
- Jin, C.; Li, S.; Liu, J. Anisotropic mechanical behaviors of columnar jointed basalt under compression. Bull. Eng. Geol. Environ. 2018, 77, 317–330. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.Y.; Wang, H.L.; Yan, L.; Xu, J.R. Anisotropic Strength, Deformability, and Failure Behavior of Artificial Columnar Jointed Rock Masses under Triaxial Compression. J. Mater. Civil Eng. 2023, 35, 14. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.Y.; Wang, H.L.; Wang, R.B.; Yan, L.; Hu, M.T. Anisotropic mechanical behaviour of columnar jointed rock masses subjected to cyclic loading: An experimental investigation. Int. J. Rock Mech. Min. Sci. 2021, 148, 104954. [Google Scholar] [CrossRef]
- Zhang, S.Y.; He, M.J.; Gu, J.J.; Cui, Z.H.; Wang, J.; Zhong, L.; Meng, Q.X.; Wang, H.L. Rock Mass Classification for Columnar Jointed Basalt: A Case Study of Baihetan Hydropower Station. Geofluids 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, L.; Zhu, S.; Wu, J. Study on the Anisotropy of Strength Properties of Columnar Jointed Rock Masses Using a Geometric Model Reconstruction Method Based on a Single-Random Movement Voronoi Diagram of Uniform Seed Points. Symmetry 2023, 15, 944. [Google Scholar] [CrossRef]
- Zhang, J.C.; Jiang, Q.; Feng, G.L.; Li, S.J.; Pei, S.F.; He, B.G. Geometrical characteristic investigation of the Baihetan irregular columnar jointed basalt and corresponding numerical reconstruction method. J. Cent. South Univ. 2022, 29, 455–469. [Google Scholar] [CrossRef]
- Meng, Q.X.; Wang, H.L.; Xu, W.Y.; Chen, Y.L. Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass. Int. J. Rock Mech. Min. Sci. 2019, 124, 104127. [Google Scholar] [CrossRef]
- Duyckaerts, C.; Godefroy, G. Voronoi tessellation to study the numerical density and the spatial distribution of neurones. J. Chem. Neuroanat. 2000, 20, 83–92. [Google Scholar] [CrossRef]
- Zhu, X.D.; Hu, L.X.; Jiang, Q.; Li, S.J.; Li, J. Failure Characteristics and Support Optimal Design of Columnar Jointed Rock Mass at a Diversion Tunnel. Appl. Mech. Mater. 2013, 353, 1680. [Google Scholar] [CrossRef]
- Ghazvinian, E.; Diederichs, M.S.; Quey, R. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J. Rock Mech. Geotech. 2014, 6, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.M.; Zhu, S.; Zhu, Z.D. Cosserat ordinary state-based peridynamic model and numerical simulation of rock fracture. Comput. Geotech. 2023, 155, 15. [Google Scholar] [CrossRef]
- Di, S.J.; Zheng, W.T.; Zhang, J.K. Back Analysis on Mechanical Deformation Parameters of Columnar Jointed Rock Mass. Appl. Mech. Mater 2011, 55, 1947–1950. [Google Scholar] [CrossRef]
- Anchi, S.H.I.; Mingfa, T.; Qijian, Z. Research of Deformation Characteristics of Columnar Jointed Basalt at Baihetan Hydropower Station on Jinsha River. Chin. J. Rock Mech. Eng. 2008, 27, 2079–2086. [Google Scholar]
- Hao, X.J.; Feng, X.T.; Yang, C.X.; Jiang, Q.; Li, S.J. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel. Rock Mech. Rock Eng. 2016, 49, 1289–1312. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Liu, C.H.; Duan, K.; Zhang, Z.J.; Xiang, W. True Three-Dimensional Geomechanical Model Tests for Stability Analysis of Surrounding Rock During the Excavation of a Deep Underground Laboratory. Rock Mech. Rock Eng. 2020, 53, 517–537. [Google Scholar] [CrossRef]
- Liu, C.X. True Three Dimensional Physical Simulation and Nonlinear Strength Reduction Analysis of Surrounding Rock Stability in Deep Underground Laboratory. Doctor’s Thesis, Shandong University, Jinan, China, 2020. [Google Scholar]
- Chen, X.G.; Li, T.B.; Xu, J.P.; Li, Y.L. Mechanism of zonal disintegration phenomenon (ZDP) and model test validation. Theor. Appl. Fract. Mech. 2017, 88, 39–50. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhang, X.T.; Wang, Z.C.; Xiang, W.; Xue, J.H. Failure mechanism and numerical simulation of zonal disintegration around a deep tunnel under high stress. Int. J. Rock Mech. Min. Sci. 2017, 93, 344–355. [Google Scholar] [CrossRef]
Size (m) | Average Prism Diameter (m) | Irregular Factor | Dip Angle | Strike Angle | Transverse Joint Connectivity | Transverse Joint Spacing (m) |
---|---|---|---|---|---|---|
20 × 10 × 30 | 0.21 | 38.42% | 0° 15° 30° 45° 60° 75° 90° | S89°E27° | 0 | 1.5 |
Bulk Density (kg/m3) | Friction Angle (°) | Cohesion (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
2780 | 56.13 | 12.4 | 5.6 | 60.4 | 0.21 |
Normal Stiffness (GPa/m) | Shear Stiffness (GPa/m) | Friction Angle (°) | Cohesion (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|
100.8 | 52.3 | 36.5 | 0.62 | 0 |
Load Steps | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Applied stress | 0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |
Actual experiment data/mm | 0.068 | 0.143 | 0.212 | 0.292 | 0.361 | 0.068 |
Numerical results/mm | 0.077 | 0.135 | 0.236 | 0.279 | 0.370 | 0.077 |
Relative error/% | 13.56 | −5.72 | 11.31 | −4.56 | 2.75 | 13.56 |
Monitoring Point | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Monitored Position | Vault | Left Spandrel | Right Spandrel | Middle Left Wall | Middle Right Wall | Left Wall Foot | Right Wall Foot | Floor |
Displacement at the dip angle of 0° | 12.24 | 21.60 | 23.60 | 19.52 | 21.35 | 9.46 | 9.36 | 8.85 |
Displacement at the dip angle of 15° | 12.04 | 21.31 | 22.74 | 19.95 | 21.83 | 10.43 | 8.47 | 8.78 |
Displacement at the dip angle of 30° | 11.14 | 21.50 | 23.57 | 19.15 | 22.39 | 7.65 | 9.92 | 7.65 |
Displacement at the dip angle of 45° | 16.90 | 30.31 | 32.13 | 28.82 | 33.92 | 13.79 | 14.47 | 12.78 |
Displacement at the dip angle of 60° | 18.66 | 26.27 | 29.33 | 27.10 | 30.59 | 8.91 | 13.68 | 12.80 |
Displacement at the dip angle of 75° | 11.75 | 24.15 | 28.91 | 22.52 | 25.82 | 8.67 | 10.97 | 8.40 |
Displacement at the dip angle of 90° | 10.92 | 24.02 | 26.67 | 23.29 | 25.65 | 9.46 | 9.55 | 7.08 |
The Dip Angle of CJRM | 0° | 15° | 30° | 45° | 60° | 75° | 90° |
---|---|---|---|---|---|---|---|
2.5 | 2.6 | 2.6 | 1.8 | 2.1 | 2.2 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhu, Z.; Zhu, S.; Wu, J. A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel. Symmetry 2023, 15, 1232. https://doi.org/10.3390/sym15061232
Wang L, Zhu Z, Zhu S, Wu J. A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel. Symmetry. 2023; 15(6):1232. https://doi.org/10.3390/sym15061232
Chicago/Turabian StyleWang, Luxiang, Zhende Zhu, Shu Zhu, and Junyu Wu. 2023. "A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel" Symmetry 15, no. 6: 1232. https://doi.org/10.3390/sym15061232
APA StyleWang, L., Zhu, Z., Zhu, S., & Wu, J. (2023). A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel. Symmetry, 15(6), 1232. https://doi.org/10.3390/sym15061232