Unknown Input Observer Scheme for a Class of Nonlinear Generalized Proportional Fractional Order Systems
Abstract
:1. Introduction
- To the best of the authors’ knowledge, this is the first time that an observer has been synthesized for Generalized Proportional Fractional-Order Systems.
- A full-order observer is developed, as well as a reduced-order one.
- The considered class of systems is one-sided Lipschitz nonlinear systems—an extension of the traditional Lipschitz systems.
- The developed observer (the UIO) is efficient, even for systems with unknown inputs, and this is thanks to the inner property of the UIOs. Indeed, the UIO has the ability to decouple the estimation error from these unknown inputs.
2. Preliminaries and Problem Formulation
3. Unknown Input Observer (UIO) Design
3.1. Full-Order UIO
3.2. Reduced-Order UIO
4. Numerical Example and Simulations
4.1. Full-Order Observer Design Case
4.2. Reduced-Order Observer Design Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OD | Observer Design |
GPFDEs | Generalized Proportional Fractional Differential Equations |
GPCFDEs | Generalized Proportional Caputo Fractional Differential Equations |
GPFD | Generalized Proportional Fractional Derivative |
NSs | Nonlinear Systems |
UIO | Unknown Input Observer |
OSL | One-Sided Lipschitz |
LMI | Linear Matrix Inequality |
NMI | Nonlinear Matrix Inequality |
UIFO | Unknown Input Full Order Observer |
GPFOS | Generalized Proportional Fractional Order Systems |
UIRO | Unknown Input Reduced Order Observer |
References
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spéc. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional fractional derivative with applications. J. Inequalities Appl. 2019, 2019, 101. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients. Mathematics 2020, 8, 2231. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Jarad, F.; Hammouch, Z. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 3703. [Google Scholar] [CrossRef]
- Donchev, T.; Hristova, S. Practical Stability of Generalized Proportional Caputo Fractional Differential Equations by Lyapunov Functions. In New Trends in the Applications of Differential Equations in Sciences: NTADES 2022, Sozopol, Bulgaria, June 14–17; Springer International Publishing: Cham, Switzerland, 2023; pp. 425–432. [Google Scholar] [CrossRef]
- Bohner, M.; Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound. Value Probl. 2022, 2022, 14. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’regan, D. Stability of Generalized Proportional Caputo Fractional Differential Equations by Lyapunov Functions. Fractal Fract. 2022, 6, 34. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’regan, D. Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method. Mathematics 2022, 10, 1849. [Google Scholar] [CrossRef]
- Kahouli, O.; Naifar, O.; Ben Makhlouf, A.; Bouteraa, Y.; Aloui, A.; Rebhi, A. A Robust and Non-Fragile Observer Design for Nonlinear Fractional-Order Systems. Symmetry 2022, 14, 1795. [Google Scholar] [CrossRef]
- Sergiyenko, O.; Zhirabok, A.; Ibraheem, I.K.; Zuev, A.; Filaretov, V.; Azar, A.T.; Hameed, I.A. Interval Observers for Discrete-Time Linear Systems with Uncertainties. Symmetry 2022, 14, 2131. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, W.; Zhou, M.; Chen, L. A Continuous Terminal Sliding-Mode Observer-Based Anomaly Detection Approach for Industrial Communication Networks. Symmetry 2022, 14, 124. [Google Scholar] [CrossRef]
- Akremi, R.; Lamouchi, R.; Amairi, M.; Dinh, T.N.; Raïssi, T. Functional interval observer design for multivariable linear parameter-varying systems. Eur. J. Control 2023, 71, 100794. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Y.; Chen, L. Adaptive Fuzzy Fault-Tolerant Control against Time-Varying Faults via a New Sliding Mode Observer Method. Symmetry 2021, 13, 1615. [Google Scholar] [CrossRef]
- Dam, Q.T.; Thabet, R.E.H.; Ali, S.A.; Guerin, F. Observer design for a class of uncertain nonlinear systems with sampled-delayed output using High-Gain Observer and low-pass filter: Application for a quadrotor UAV. IEEE Trans. Ind. Electron. 2023, 1–10. [Google Scholar] [CrossRef]
- Echi, N. Observer design and practical stability of nonlinear systems under unknown time-delay. Asian J. Control 2021, 23, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Jiang, B.; Zhang, K. UIO-Based Practical Fixed-Time Fault Estimation Observer Design of Nonlinear Systems. Symmetry 2022, 14, 1618. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, J.; Wang, Z.; Gao, D. Unknown input observer based distributed fault detection for nonlinear multi-agent systems with probabilistic time delay. J. Frankl. Inst. 2023, 360, 1058–1076. [Google Scholar] [CrossRef]
- Houda, K.; Saifia, D.; Chadli, M.; Labiod, S. Unknown input observer based robust control for fuzzy descriptor systems subject to actuator saturation. Math. Comput. Simul. 2023, 203, 150–173. [Google Scholar] [CrossRef]
- Ríos, H.; Dávila, J.; Fridman, L. Finite–and fixed–time observers for uncertain multiple–outputs linear systems with unknown inputs. Int. J. Robust Nonlinear Control 2023, 1–26. [Google Scholar] [CrossRef]
- Essabre, M.; Hmaiddouch, I.; El Assoudi, A.; El Yaagoubi, E.H. Design of unknown input observer for discrete-time Takagi Sugeno implicit systems with unmeasurable premise variables. Bull. Electr. Eng. Inform. 2022, 12, 59–68. [Google Scholar] [CrossRef]
- Zhang, W.; Shao, X.; Zhang, W.; Qi, J.; Li, H. Unknown input observer-based appointed-time funnel control for quadrotors. Aerosp. Sci. Technol. 2022, 126, 107351. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, M.; Chadli, M.C.; Wang, Z.-P.; Zhao, D. Unknown Input Functional Observer Design for Discrete-Time Interval Type-2 Takagi–Sugeno Fuzzy Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 4690–4701. [Google Scholar] [CrossRef]
- Luo, Q.; Nguyen, A.-T.; Fleming, J.; Zhang, H. Unknown Input Observer Based Approach for Distributed Tube-Based Model Predictive Control of Heterogeneous Vehicle Platoons. IEEE Trans. Veh. Technol. 2021, 70, 2930–2944. [Google Scholar] [CrossRef]
- Zhu, F.; Fu, Y.; Dinh, T.N. Asymptotic convergence unknown input observer design via interval observer. Automatica 2023, 147, 110744. [Google Scholar] [CrossRef]
- Tong, L.; Liu, B.; Yan, C.; Liu, D. Full-order impulsive observers for impulsive systems with unknown inputs. Asian J. Control 2023, 1–12. [Google Scholar] [CrossRef]
- Ren, H.; Ma, H.; Li, H.; Lu, R. A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems. Sci. China Technol. Sci. 2023, 66, 456–467. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, X.; Lin, F.; Zhang, J. Combination of Functional and Disturbance Observer for Positive Systems with Disturbances. Mathematics 2022, 11, 200. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, X.; Wang, B.; Hua, Y.; Ren, Z. Finite-time Observer-based H∞ Fault-tolerant Output Formation Tracking Control for Heterogeneous Nonlinear Multi-agent Systems. IEEE Trans. Netw. Sci. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Su, H.; Zhu, F.; Azar, G.M. Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dyn. 2015, 79, 1469–1479. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, C.; Chen, B.; Zhao, X. H∞ observer design for uncertain one-sided Lipschitz nonlinear systems with time-varying delay. Appl. Math. Comput. 2020, 375, 125066. [Google Scholar] [CrossRef]
- Li, J.; Han, T.; Xiao, B.; Yang, Q.; Yan, H. Observer-based time-varying group formation tracking for one-sided Lipschitz nonlinear second-order multi-agent systems. Trans. Inst. Meas. Control 2023, 01423312231162896. [Google Scholar] [CrossRef]
- Iqbal, W.; Ghous, I.; Ansari, E.A.; Duan, Z.; Imran, M.; Khan, A.A.; Humayun, M.T. Robust nonlinear observer-based controller design for one-sided Lipschitz switched systems with time-varying delays. J. Frankl. Inst. 2023, 360, 2046–2067. [Google Scholar] [CrossRef]
- Razaq, M.A.; Rehan, M.; Hussain, M.; Ahmed, S.; Hong, K.S. Observer-based leader-following consensus of one-sided Lipschitz multi-agent systems over input saturation and directed graphs. Asian J. Control 2023, 1–17. [Google Scholar] [CrossRef]
- Wang, M.; Yang, X.; Mao, S.; Yiu, K.F.C.; Park, J.H. Consensus of multi-Agent systems with one-Sided lipschitz nonlinearity via nonidentical double event-Triggered control subject to deception attacks. J. Frankl. Inst. 2023, 360, 6275–6295. [Google Scholar] [CrossRef]
- Li, H.; Cao, J. Event-triggered group consensus for one-sided Lipschitz multi-agent systems with input saturation. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107234. [Google Scholar] [CrossRef]
- Yang, W.; Dong, J.; Meng, F. Dynamic edge event-triggered consensus for one-sided Lipschitz multiagent systems with disturbances. Int. J. Robust Nonlinear Control. 2023, 33, 5305–5321. [Google Scholar] [CrossRef]
- Phuong, N.T.; Sau, N.H.; Thuan, M.V. Finite-time dissipative control design for one-sided Lipschitz nonlinear singular Caputo fractional order systems. Int. J. Syst. Sci. 2023, 54, 1694–1712. [Google Scholar] [CrossRef]
- Almeida, R.; Agarwal, R.P.; Hristova, S.; O’regan, D. Quadratic Lyapunov Functions for Stability of the Generalized Proportional Fractional Differential Equations with Applications to Neural Networks. Axioms 2021, 10, 322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, A.O.M.; Jmal, A.; Naifar, O.; Ben Makhlouf, A.; Rhaima, M.; Mchiri, L. Unknown Input Observer Scheme for a Class of Nonlinear Generalized Proportional Fractional Order Systems. Symmetry 2023, 15, 1233. https://doi.org/10.3390/sym15061233
Alsharif AOM, Jmal A, Naifar O, Ben Makhlouf A, Rhaima M, Mchiri L. Unknown Input Observer Scheme for a Class of Nonlinear Generalized Proportional Fractional Order Systems. Symmetry. 2023; 15(6):1233. https://doi.org/10.3390/sym15061233
Chicago/Turabian StyleAlsharif, Ali Omar M., Assaad Jmal, Omar Naifar, Abdellatif Ben Makhlouf, Mohamed Rhaima, and Lassaad Mchiri. 2023. "Unknown Input Observer Scheme for a Class of Nonlinear Generalized Proportional Fractional Order Systems" Symmetry 15, no. 6: 1233. https://doi.org/10.3390/sym15061233
APA StyleAlsharif, A. O. M., Jmal, A., Naifar, O., Ben Makhlouf, A., Rhaima, M., & Mchiri, L. (2023). Unknown Input Observer Scheme for a Class of Nonlinear Generalized Proportional Fractional Order Systems. Symmetry, 15(6), 1233. https://doi.org/10.3390/sym15061233