Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions
Abstract
:1. Introduction
2. An Auxiliary Lemma
3. Statement of Main Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Apostol, T.M. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Nielsen, N. Traité Élémentaire des Nombres de Bernoulli; Gauthier-Villars: Paris, France, 1923. [Google Scholar]
- Nörlund, N.E. Vorlesungen über Differenzenrechnung; Springer: Berlin/Heidelberg, Germany, 1924. [Google Scholar]
- Belbachir, H.; Djemmada, Y.; Hadj-Brahim, S. Unified Bernoulli-Euler polynomials of Apostol type. Indian J. Pure Appl. Math. 2023, 54, 76–83. [Google Scholar] [CrossRef]
- Raabe, J.L. Zurückführung einiger Summen und bestimmten Integrale auf die Jacob-Bernoullische Function. J. Reine Angew. Math. 1851, 42, 348–367. [Google Scholar]
- Howard, F.T. Applications of a recurrence for the Bernoulli numbers. J. Number Theory 1995, 52, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Tuenter, H.J.H. A symmetry of power sum polynomials and Bernoulli numbers. Am. Math. Monthly 2001, 108, 258–261. [Google Scholar] [CrossRef]
- Yang, S.-L. An identity of symmetry for the Bernoulli polynomials. Discrete Math. 2008, 308, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Kim, T. Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 2008, 14, 1267–1277. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 2009, 309, 3346–3363. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, W. Some results on power sums and Apostol-type polynomials. Integral Transform. Spec. Funct. 2010, 21, 307–318. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H. Several identities for the generalized Apostol-Bernoulli polynomials. Comput. Math. Appl. 2008, 56, 2993–2999. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2013, 2013, 246. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, W. A note on the twisted Lerch type Euler zeta functions. Bull. Korean Math. Soc. 2013, 50, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.-M. Multiplication formulas for Apostol-type polynomials and multiple alternating sums. Math. Notes 2012, 91, 46–57. [Google Scholar] [CrossRef]
- Kurt, V. Some symmetry identities for the unified Apostol-type polynomials and multiple power sums. Filomat 2016, 30, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Araci, S.; Duran, U.; Acikgoz, M. A study on a class of q-Euler polynomials under the symmetric group of degree n. J. Nonlinear Sci. Appl. 2016, 9, 5196–5201. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Kurt, B.; Kurt, V. Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 1299–1313. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Identities of symmetry for Bernoulli polynomials and power sums. J. Inequal. Appl. 2020, 2020, 245. [Google Scholar] [CrossRef]
- Khan, N.; Usman, T.; Choi, J. A new class of generalized polynomials involving Laguerre and Euler polynomials. Hacet. J. Math. Stat. 2021, 50, 1–13. [Google Scholar] [CrossRef]
- Usman, T.; Khan, N.; Aman, M.; Choi, J. A family of generalized Legendre-based Apostol-type polynomials. Axioms 2022, 11, 29. [Google Scholar] [CrossRef]
- Luo, Q.-M. Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comp. 2009, 78, 2193–2208. [Google Scholar] [CrossRef] [Green Version]
- Bayad, A. Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Math. Comp. 2011, 80, 2219–2221. [Google Scholar] [CrossRef] [Green Version]
- Bayad, A. Arithmetical properties of elliptic Bernoulli and Euler numbers. Int. J. Algebra 2010, 4, 353–372. [Google Scholar]
- Hermite, C. Sur quelques conséquences arithmétiques des Formules de la théorie des fonctions elliptiques. Acta Math. 1884, 5, 297–330. [Google Scholar] [CrossRef]
- Cetin, E.; Simsek, Y.; Cangul, I.N. Some special finite sums related to the three-term polynomial relations and their applications. Adv. Differ. Equ. 2014, 2014, 283. [Google Scholar] [CrossRef] [Green Version]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Carlitz, L. Generalized Dedekind sums. Math. Z. 1964, 85, 83–90. [Google Scholar] [CrossRef]
- Bayad, A.; Raouj, A. Reciprocity formulae for multiple Dedekind-Rademacher sums. C. R. Math. Acad. Sci. Paris 2011, 349, 131–136. [Google Scholar] [CrossRef]
- Aursukaree, S.; Khemaratchatakumthorn, T.; Pongsriiam, P. Generalizations of Hermite’s identity and applications. Fibonacci Quart. 2019, 57, 126–133. [Google Scholar]
- Kim, M.-S.; Son, J.-W. On generalized Dedekind sums involving quasi-periodic Euler functions. J. Number Theory 2014, 144, 267–280. [Google Scholar] [CrossRef]
- Hu, S.; Kim, D.; Kim, M.-S. On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions. J. Number Theory 2016, 162, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Cetin, E. A note on Hardy type sums and Dedekind sums. Filomat 2016, 30, 977–983. [Google Scholar] [CrossRef]
- Berndt, B.C. Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 1978, 303/304, 332–365. [Google Scholar]
- Simsek, Y. Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of logηg,h(z). J. Number Theory 2003, 99, 338–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, W. Generalized Cochrane sums and Cochrane-Hardy sums. J. Number Theory 2007, 122, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gao, J. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czech. Math. J. 2012, 62, 1147–1159. [Google Scholar] [CrossRef]
- Can, M. Reciprocity formulas for Hall-Wilson-Zagier type Hardy-Berndt sums. Acta Math. Hungar. 2021, 163, 118–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y. Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry 2023, 15, 1384. https://doi.org/10.3390/sym15071384
He Y. Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry. 2023; 15(7):1384. https://doi.org/10.3390/sym15071384
Chicago/Turabian StyleHe, Yuan. 2023. "Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions" Symmetry 15, no. 7: 1384. https://doi.org/10.3390/sym15071384
APA StyleHe, Y. (2023). Applications of Symmetric Identities for Apostol–Bernoulli and Apostol–Euler Functions. Symmetry, 15(7), 1384. https://doi.org/10.3390/sym15071384